基于K-MEANS聚类的客户价值分群

本文通过层次聚类和K-MEANS聚类对餐饮公司客户数据进行分析,发现K-MEANS聚类效果更好,最终确定了三个客户群体:高价值客户群(消费频繁,金额高)、中等价值客户群(消费频次中等,金额中等)和低价值客户群(消费频次低,金额低)。商家可根据这些群体特征制定个性化营销策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 验目的及要求:
  1. 学会以层次聚类、K-means聚类模型为代表的聚类分析模型的建模方法;
  2. 学会借助R软件进行基本的数据建模分析。
  • 实验仪器:

Windows10系统,R Studio软件等。

  • 实验原理:

聚类分析是研究如何对事物进行分类的一种多元统计方法,将几种不同的事物依据属性对其进行辨认,将相似的事物聚成一类,使得同一类事物有高度的相似性。其中常用的聚类方法有层次聚类以及K-means聚类。

  1、层次聚类;

(1)初始化:每个样本归为一类,并计算每个类之间的距离

(2)寻找距离最近的两个类,合并为一个类

(3)重新计算合并后的类和其他类之间的距离

(4)重复2和3,直至所有样本都划分到某一类

  2、K-means聚类:

(1) 选择K个中心点(随机选择K行);

(2) 把每个数据点分配到离它最近的中心点;

(3) 重新计算每类中的点到该类中心点距离的平均值(也就说,得到长度为p的均值向量,,这里的p是变量的个数);

(4) 分配每个数据到它最近的中心点;

(5) 重复步骤(3)和步骤(4)直到所有的观测值不再被分配或是达到最大的迭代次数(R把10次作为默认迭代次数)。

  • 实验方法

聚类分析的应用十分广泛,在商业中被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征。聚类分析是细分市场的有效工具,同时也可用于研究消费者行为,寻找新的潜在市场、选择实验的市场,并作为多元分析的预处理。

K-Means聚类算法是一种常用的无监督学习算法,可以用于将数据分成若干个簇,使得同一簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。基于K-Means聚类算法对餐饮客户价值进行分析,可以帮助餐饮企业识别不同价值的客户群体,从而制定更有针对性的营销策略。 以下是一个使用Python实现基于K-Means聚类算法对餐饮客户价值分析的代码示例: ```python import pandas as pd import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('customer_data.csv') # 数据预处理 # 假设数据包含以下列:'total_spent', 'visit_frequency', 'last_visit_days' X = data[['total_spent', 'visit_frequency', 'last_visit_days']] # 使用K-Means聚类 kmeans = KMeans(n_clusters=3, random_state=42) kmeans.fit(X) data['cluster'] = kmeans.labels_ # 可视化聚类结果 plt.figure(figsize=(10, 7)) plt.scatter(data['total_spent'], data['visit_frequency'], c=data['cluster'], cmap='viridis') plt.xlabel('Total Spent') plt.ylabel('Visit Frequency') plt.title('K-Means Clustering of Customer Value') plt.show() # 分析每个簇的客户价值 cluster_summary = data.groupby('cluster').agg({ 'total_spent': 'mean', 'visit_frequency': 'mean', 'last_visit_days': 'mean' }).reset_index() print(cluster_summary) ``` 在这个示例中,我们首先读取了客户数据,并假设数据包含以下列:`total_spent`(总消费金额)、`visit_frequency`(访问频率)和`last_visit_days`(最近一次访问的天数)。然后,我们使用K-Means聚类算法将这些客户分成3个簇,并可视化聚类结果。最后,我们计算每个簇的客户价值特征的平均值,以便分析每个簇的客户价值
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值