前言
PyTorch 提供了大量与神经网络、随机张量代数(arbitrary tensor algebra)、数据整合(data wrangling)以及其他目的相关的操作。但是,您仍然可能会发现自己需要更多自定义操作。例如,您可能想使用在论文中发现的新的激活函数,或者实现您在研究过程中所开发的新的运算。
在 PyTorch 中整合这样的自定义操作最简单的方法是利用 Python 编写扩展的函数(Funciton)和模型(Module),如此处所描写的那样。这让您可以充分地利用自动微分(automatic differentiation)(使你不需要自己编写派生函数)与 Python 在通常情况下的表现力。然而,在有些时候您的一些操作可以使用 C++ 以获得更佳的效果。比如,您的代码在模型当中会被十分 频繁地调用,或者即便调用次数较少也会带来昂贵的开销。另一个可能的原因是您的代码依赖于一些 C 和 C++ 库,或者需要与它们交互。为了解决这种情况,PyTorch 提供了一种非常简单的编写自定义 C++ 扩展 的方法。
C++ 扩展是一种我们开发的以允许用户(您)创建一些包含的资源 之外的 PyTorch 运算符,例如,与 PyTorch 后端分离开来。此方法与原生的 PyTorch 操作的实现方式不同。C++ 扩展旨在为您提供大量与 PyTorch 后端集成在一起相关的样板(boilerplate),同时为基于 PyTorch 的项目提供高度的灵活性。但是,一旦将操作定义为 C++ 扩展,将其转换为原生 PyTorch 函数在很大程度上取决于您的代码组织结构,如果您决定在较早阶段进行操作,则可以解决这个问题。
1. 动机和例子
本篇文章的其余部分将逐步介绍一个编写和使用 C++(和CUDA)扩展的实际示例。如果您一直在被催促,或者在今天结束前仍未完成该扩展您就会被开除,那么可以跳过本节,直接进入下一部分的实施细节。
假设您想出了一种新型的循环单元,与现有技术相比,它具有更好的性能。该循环单元与 LSTM 相似,但不同之处在于,它没有遗忘门,并使用指数线性单元(ELU)作为其内部激活函数。由于此单元永远不会忘记,因此我们将其称为 LLTM 或长长期记忆(Long-Long-Term-Memory)单元。
由于 LLTM 和 LSTM 两者的区别过于明显,以至于我们不能通过修改 PyTorch 中的 LSTMCell 来实验我们的目标,因此我们需要创建一个自定义单元。解决这个问题的第一种也是最简单的一种 — 并且在所有情况下都是最好的一步 — 是使用 Python 在原生的 PyTorch 中实现我们所需的功能。为此,我们需要继承 torch.nn.Module 并实现LLTM的前向传播。 代码如下:
class LLTM(torch.nn.Module):
def __init__(self, input_features, state_size):
super(LLTM, self).__init__()
self.input_features = input_features
self.state_size = state_size
# 3 * state_size for input gate, output gate and candidate cell gate.
# input_features + state_size because we will multiply with [input, h].
self.weights = torch.nn.Parameter(
torch.empty(3 * state_size, input_features + state_size))
self.bias = torch.nn.Parameter(torch.empty(3 * state_size))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.state_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, +stdv)
def forward(self, input, state):
old_h, old_cell = state
X = torch.cat([old_h, input], dim=1)
# Compute the input, output and candidate cell gates with one MM.
gate_weights = F.linear(X, self.weights, self.bias)
# Split the combined gate weight matrix into its components.
gates = gate_weights.chunk(3, dim=1)
input_gate = torch.sigmoid(gates[0])
output_gate = torch.sigmoid(gates[1])
# Here we use an ELU instead of the usual tanh.
candidate_cell = F.elu(gates[2])
# Compute the new cell state.
new_cell = old_cell + candidate_cell * input_gate
# Compute the new hidden state and output.
new_h = torch.tanh(new_cell) * output_gate
return new_h, new_cell
单元的调用方式如预期那样:
import torch
X = torch.randn(batch_size, input_features)
h = torch.randn(batch_size, state_size)
C = torch.randn(batch_size, state_size)
rnn = LLTM(input_features, state_size)
new_h, new_C = rnn(X, (h, C))
当然,如果可能的话,您应该使用如下方法扩展 PyTorch。由于 PyTorch 在 NVIDIA cuDNN,Intel MKL 或 NNPACK 等库的支持下对其 CPU 和 GPU 的操作进行了高度优化的实现,因此前述的 PyTorch 代码通常足够快。但是,我们还是可以发现,在某些情况下为什么性能仍然有进一步改进的空间。最明显的原因是 PyTorch 不了解您要实现的算法。它仅知道您用于组成算法的单个操作。因此,PyTorch 必须逐个执行您的操作。由于对操作的实现(或内核)的每个单独调用(可能涉及启动CUDA内核)都具有一定的开销,因此该开销在许多函数调用中可能变得十分明显。此外,运行我们代码的 Python 解释器本身也可能会使我们的程序变慢。
一种明显的加速方法是用 C++(或CUDA)重写这部分代码并融合 特定的操作组。 融合是指将许多函数的实现组合到一个函数中,这可以从两个方面受益:更少的内核启动,以及在提高全局数据流可见性的情况下执行的其他优化。
让我们看看如何使用 C++ 扩展来实现 LLTM 的融合 版本。我们将从使用支持 PyTorch 大部分后端功能的 ATen 库以原生 C++ 编写代码开始,然后看看它是如何让我们轻松转换 Python 代码的。然后,我们将模型的各个部分移至 CUDA 内核,以从 GPU 提供的大规模并行处理中受益,从而进一步加快处理速度。
2. 编写一个 C++ 扩展
C++ 扩展有两种形式:可以使用 setuptools
“提前”构建,也可以通过 torch.utils.cpp_extension.load()
“即时”构建。 我们将从第一种方法开始,稍后再讨论后者。
2.1 使用 setuptools
进行构建
为了实现“提前”构建,我们编写一个 setup.py
脚本来构建 C++ 扩展,其使用 setuptools
来编译我们的 C++ 代码。对于 LLTM,脚本十分简单,如下所示:
from setuptools import setup, Extension
from torch.utils import cpp_extension
setup(name='lltm_cpp',
ext_modules=[cpp_extension.CppExtension('lltm_cpp', ['lltm.cpp'])],
cmdclass={
'build_ext': cpp_extension.BuildExtension})
在这部分代码中,CppExtension
是 setuptools.Extension
的一个便利的包装器(wrapper),它传递正确的引用路径,并且将扩展包语言设置为 c++。等效的泛化版 setuptools
简单代码如下所示:
Extension(
name='lltm_cpp',
sources=['lltm.cpp'],
include_dirs=cpp_extension.include_paths(),
language='c++')
BuildExtension
执行并检查许多必需的配置步骤,并且在混合使用 C++ / CUDA 扩展的情况下管理混合编译。这就是我们目前真正需要了解的有关构建 C++ 扩展的全部信息!现在让我们看一下 lltm.cpp
中的 C++ 扩展的实现。
2.1.1 编写 c++ 操作
现在让我们开始利用 c++ 实现 LLTM!我们后向传播需要的一个函数是 Sigmoid
的导数。 这是一小段代码,用于讨论编写 C++ 扩展时可供我们使用的总体环境:
#include <torch/extension.h>
#include <iostream>
torch::Tensor d_sigmoid(torch::Tensor z) {
auto s = torch::sigmoid(z);
return (1 - s) * s;
}
<torch / extension.h>
是一站式(one-stop)头文件,其中包括编写 C++ 扩展所有必需的 PyTorch 扩展。 这包括:
- ATen 库,它是我们张量计算的主要 API,
- pybind11,用于实现我们的 C++ 代码的 Python 衔接方法,
- 其他管理 ATen 和 pybind11 交互细节的头文件。
d_sigmoid()
的实现展示了如何使用 ATen API
。PyTorch 的张量和变量接口是由 ATen 库自动生成的,因此我们可以或多或少地实现将 Python 以 1:1 的形式转换为 C++。我们用于所有计算的主要数据类型将是 torch::Tensor
。它的完整 API 可以在这里查到。注意,我们可以包含 <iostream>
或任何其他 C 或 C++ 头文件 — 我们可以使用 C++11 的全部功能。
1 前向传播
接下来,我们可以将整个前向传播部分移植为 C++ 代码:
#include <vector>
std::vector<at::Tensor> lltm_forward(
torch::Tensor input,
torch::Tensor weights,
torch::Tensor bias,
torch::Tensor old_h,
torch::Tensor old_cell) {
auto X = torch::cat({
old_h, input}, /*dim=*/1);
auto gate_weights = torch::addmm(bias, X, weights.transpose(0, 1));
auto gates = gate_weights.chunk(3, /*dim=*/1);
auto input_gate = torch::sigmoid(gates[0]);
auto output_gate = torch::sigmoid(gates[1]);
auto candidate_cell = torch::elu(gates[2], /*alpha=*/1.0);
auto new_cell = old_cell + candidate_cell * input_gate;
auto new_h = torch::tanh(new_cell) * output_gate;
return {
new_h,
new_cell,
input_gate,
output_gate,
candidate_cell,
X,
gate_weights};
}
2 后向传播
C++ 扩展 API 当前不提供为我们自动生成后向传播函数的方法。因此,我们必须要自己实现 LLTM 的后向传播,其将计算每个前向传播的输入的导数。最终,我们前向传播和后向传播函数加入 torch.autograd.Function
中以建立一个不错的 Python 衔接。后向传播的复杂度较高,因此我们不深入研究代码(如果您感兴趣,可以阅读 Alex Graves 的论文,以获得更多有关此方面的信息:
// tanh'(z) = 1 - tanh^2(z)
torch::Tensor d_tanh(torch::Tensor z) {
return 1 - z.tanh().pow(2);
}
// elu'(z) = relu'(z) + { alpha * exp(z) if (alpha * (exp(z) - 1)) < 0, else 0}
torch::Tensor d_elu(torch::Tensor z, torch::Scalar alpha = 1.0) {
auto e = z.exp();
auto mask = (alpha * (e - 1)) < 0;
return (z > 0).type_as(z) + mask.type_as(z) * (alpha * e);
}
std::vector<torch::Tensor> lltm_backward(
torch::Tensor grad_h,
torch::Tensor grad_cell,
torch::Tensor new_cell,
torch::Tensor input_gate,
torch::Tensor output_gate,
torch::Tensor candidate_cell,
torch::Tensor X,
torch::Tensor gate_weights,
torch::Tensor weights) {
auto d_output_gate = torch::tanh(new_cell) * grad_h;
auto d_tanh_new_cell = output_gate * grad_h;
auto d_new_cell = d_tanh(new_cell) * d_tanh_new_cell + grad_cell;
auto d_old_cell = d_new_cell;
auto d_candidate_cell = input_gate * d_new_cell;
auto d_input_gate = candidate_cell * d_new_cell;
auto gates = gate_weights.chunk(3, /*dim=*/1);
d_input_gate *= d_sigmoid(gates[0]);
d_output_gate *= d_sigmoid(gates[1]);
d_candidate_cell *= d_elu(gates[2]);
auto d_gates =
torch::cat({
d_input_gate, d_output_gate, d_candidate_cell}, /*dim=*/1);
auto d_weights = d_gates.t().mm(X);
auto d_bias = d_gates.sum(/*dim=*/0, /*keepdim=*/true);
auto d_X = d_gates.mm(weights);
const auto state_size = grad_h.size(1);
auto d_old_h = d_X.