论文阅读:Bayesian GAN

Bayesian GAN

点击访问paper
官方github
半监督学习对比算法

1.简介

贝叶斯 GAN(Saatchi 和 Wilson,2017)是生成对抗网络(Goodfellow,2014)的贝叶斯公式,我们在其中学习生成器参数 θ g \theta_g θg 和鉴别器参数 θ d \theta_d θd 的分布,而不是优化 用于点估计。 贝叶斯方法的优点包括在参数空间中灵活地建模多模态,以及在最大似然(非贝叶斯)情况下防止模式崩溃的能力。

我们通过称为“随机梯度哈密顿蒙特卡罗(SGHMC)”的近似推理算法来学习贝叶斯 GAN,这是一种基于梯度的 MCMC 方法,其样本近似于 θ g \theta_g θg θ d \theta_d θd 的真实后验分布。

贝叶斯 GAN 训练过程从固定分布(通常是标准 d-dim 正态分布)中采样噪声 z z z 开始。 噪声被馈送到生成器,其中参数 θ g \theta_g θg 从后验分布 p ( θ g ∣ D ) p(\theta_g | D) p(θgD) 中采样。 给定参数 θ g \theta_g θg ( G ( z ∣ θ g ) G(z|\theta_g) G(zθg)) 生成的图像以及真实数据呈现给鉴别器,其参数是从其后验分布 p ( θ d ∣ D ) p(\theta_d|D) p(θdD) 中采样的 。 我们使用梯度 ∂ log ⁡ p ( θ g ∣ D ) ∂ θ g \frac{\partial \log p(\theta_g|D) }{\partial \theta_g } θglogp(θgD) ∂ log ⁡ p ( θ d ∣ D ) ∂ θ d \frac{\partial \log p(\theta_d|D) }{\partial \theta_d } θdlogp(θdD) 更新后验与随机梯度哈密顿蒙特卡罗 (SGHMC)。

SGHMC 通过优化噪声损失

首先,观察到除了噪声 n \boldsymbol{n} n 之外,更新规则与动量 SGD 类似。 事实上,如果没有 n \boldsymbol{n} n,这相当于执行动量 SGD,损失为 − ∑ i = 1 J g ∑ k = 1 J d log ⁡ posterior - \sum_{i=1}{J_g} \sum_{k=1}^{J_d} \log \text{posterior} i=1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风尘23187

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值