2D/3D特征提取学习

二维特征:

colmap使用方法——SIFT算法特征提取:

DOG差分金字塔(多尺度空间),提取极值;子像素插值(Sub-pixel Interpolation)泰勒梯度插值去除假极值;图像Hessian矩阵极值去除边缘点;像素梯度解出方分布特征,主方向和辅方向,得到包含方向的特征;最后利用448=128维作为向量描述子,采用欧式距离匹配。

优点:尺度不变性—多尺度处理;旋转不变性—方向梯度;特征丰富抗噪
缺点:计算复杂度高;内存占用大;算法参数敏感:高斯金字塔层数,尺度空间采样步长需实验设定佳值
使用:colmap

HOG(方向梯度直方图)

梯度直方图。
灰度处理,归一化:调节图像对比度,降低图像局部的阴影、光照变化造成的影响,降噪。
计算每个像素的梯度,划分成多个cell,每个cell包含6*6个像素,分为一个以40°为一格共9格的扇形梯度直方图;将多个3×3cell合并在一个block内,进行块内归一化处理,得到3×3×9个HOG特征。

优点:几何光学不变性—cell局部单元
缺点:实时性差;无旋转不变性;无尺度不变性;噪声敏感—可添加高斯平滑
使用:人体检测

LBP(Local Binary Pattern)局部二值模式

将一张图像划分为多个cell,每个cell包含16×16个像素;对其中的每个像素与相邻的八个像素进行灰度比较,小于为0,大于为1即一个八位二进制的数LBP值;并组成了一个灰度直方图;每个cell的直方图特征连接起来组成LBP特征向量。

优点:旋转不变性;光照不敏感—灰度不变性;计算速度快
缺点:方向敏感
使用:纹理分类,人脸识别

Haar-like 特征

采用矩形特征,积分图记录检索。用于面部特征识别。

优点:很好描述阴影变化
缺点:纹理复杂度描述低
使用: 人脸识别

ORB

优点:速度快,具有较好旋转不变性
缺点:尺度不变性很差,精度比sift弱

Surf

优点:精度高于BRIEF
缺点:实时性低

三维特征:

类HOG
PFH( Point Feature Histogram):
提取每个点一定邻域内,与其他点的法线角度,分为abc三个角度元素,并将每个角度元素分成五份,以直方图的形式存储。直方图单个区间代表单个特征,有值则存在该特征。

FPFH(Fast Feature Histogram):
迭代增长搜寻。采用简化点特征直方图SPFH(Simplified Point Feature Histogram)。
先计算SPFH,再加权为 FPFH。每个点的直方图特征加上距离权重:
参考在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值