1. 目的
AI产品的开发涉及多个环节,包括数据处理、模型训练、应用开发和部署。本文以一个智能客服助手为例,阐述AI开发的完整流程,并提供每个阶段的最佳实践和工具推荐
2. 数据准备
2.1 数据收集
-
来源:公开数据集(如Cornell Movie Dialogs)、企业客服日志、爬取问答数据(如Stack Overflow)。
-
工具:
-
Scrapy
(爬取网页数据) -
BeautifulSoup
(解析HTML) -
Hugging Face Datasets
(加载公开数据集)
-
2.2 数据清洗
-
处理缺失值、重复数据、噪声数据
-
工具:
-
Pandas
(数据清洗) -
NLTK/spaCy
(文本预处理)
-
2.3 数据标注
-
人工标注(如使用
Label Studio
) -
自动标注(如
Snorkel
弱监督学习)
2.4 数据增强
-
文本增强(
NLPAug
、TextAttack
) -
图像增强(
Albumentations
)
2.5 数据集划分
-
训练集(70%)、验证集(15%)、测试集(15%)
-
工具:
scikit-learn
的train_test_split
3. 模型训练
3.1 模型选择
-
NLP任务:BERT、GPT-3(Hugging Face
transformers
库) -
CV任务:ResNet、ViT
3.2 训练流程
-
数据加载(
torch.utils.data.Dataset
) -
模型定义(
nn.Module
) -
损失函数(
CrossEntropyLoss
) -
优化器(
AdamW
) -
训练循环(
torch.optim.lr_scheduler
调整学习率)
3.3 模型评估
-
指标:准确率、F1-score、BLEU(NLP)
-
工具:
torchmetrics
3.4 超参数优化
-
方法:网格搜索、贝叶斯优化(
Optuna
)
3.5 模型保存与加载
torch.save(model.state_dict(), "model.pth") model.load_state_dict(torch.load("model.pth"))
4. 智能体应用开发
4.1 智能体架构
-
基于LLM的对话系统(如GPT-4 + LangChain)
-
工具:
-
LangGraph
(构建多智能体工作流) -
LlamaIndex
(知识增强)
-
4.2 开发流程
-
定义智能体节点(如“查询数据库”、“生成回复”)
-
构建工作流(
LangGraph
编排) -
集成外部API(如企业CRM系统)
4.3 调试与优化
-
日志记录(
Loguru
) -
A/B测试(比较不同提示词效果)
5. 产品部署
5.1 部署方式
-
云服务(AWS SageMaker、Google Vertex AI)
-
本地部署(
FastAPI
+Docker
)
5.2 模型服务化
from fastapi import FastAPI app = FastAPI() @app.post("/predict") def predict(text: str): return model.generate(text)
5.3 监控与维护
-
Prometheus + Grafana(监控模型性能)
-
CI/CD(GitHub Actions自动化部署)