冲击噪声
在信号处理领域内,高斯分布假设一直占据着主导地位,因为其概率密度函数可以仅由均值和方差两个变量描述,这给信号的理论分析提供了极大的方便;而且基于高斯假设条件下的信号处理方法通常是线性的并且一般可以得到闭式最优解。然而,实际环境中存在许多非高斯特性的冲击噪声,如通信线路上的瞬间尖峰、由大气放电而引起的大气噪声以及雷达产生的部分杂波等。相比于高斯噪声,这类冲击噪声在时域上出现大量显著的尖峰脉冲特性,在概率密度上具有更加厚重的拖尾现象。Shao 和 Nikias 发现这种带有冲击性质的非高斯噪声可以用α\alphaα稳定分布来描述。相对于高斯噪声,冲击噪声在实际中的用处更为广泛,因此关于冲击噪声背景下的研究也开始受到人们的关注。
α\alphaα稳定分布
为了更好地描述冲击噪声,首先引入α\alphaα稳定分布的概念。如果一个随机变量 的特征函数可以被表示为
φ(t)={exp{jμt−γ∣t∣α[1+jβsgn(t)tan(απ2)]} if α≠1exp{jμt−γ∣t∣α[1+jβsgn(t)2πlog∣t∣]} if α=1\varphi(t)=\left\{\begin{array}{ll}
\exp \left\{j \mu t-\gamma|t|^{\alpha}\left[1+j \beta \operatorname{sgn}(t) \tan \left(\frac{\alpha \pi}{2}\right)\right]\right\} & \text { if } \alpha \neq 1 \\
\exp \left\{j \mu t-\gamma|t|^{\alpha}\left[1+j \beta \operatorname{sgn}(t) \frac{2}{\pi} \log |t|\right]\right\} & \text { if } \alpha=1
\end{array}\right.φ(t)={exp{jμt−γ∣t∣α[1+jβsgn(t)tan(2απ)]}exp{jμt−γ∣t∣α[1+jβsgn(t)π2log∣t∣]} if α=1 if α=1
其中,0<α≤2,−1≤β≤1,γ>0,−∞<μ<+∞0<\alpha \le 2,-1\le \beta \le 1,\gamma >0,-\infty <\mu <+\infty0<α≤2,−1≤β≤1,γ>0,−∞<μ<+∞ ,则该随机变量服从稳定的α\alphaα分布。因此,α\alphaα稳定分布可以由参数α,β,γ,μ\alpha ,\beta ,\gamma ,\muα,β,γ,μ唯一确定,α\alphaα为特征指数,决定了α\alphaα稳定分布的冲击程度; β\betaβ为对称参数,决定了分布的扭曲程度;γ\gammaγ为尺度参数,决定了分布偏离均值的程度;μ\muμ为位置参数,决定了分布的概率密度函数在xxx轴的偏离程度。
当β=μ=0,γ=1\beta =\mu =0,\gamma =1β=μ=0,γ=1时,此时的分布称为标准的SαSS\alpha SSαS稳定分布,特别地,当α=1\alpha =1α=1时,分布为柯西分布;当α=2\alpha =2α=2时,分布为高斯分布
下面给出了不同α\alphaα值的冲击噪声仿真的结果。
从图中可以看出,α\alphaα值越小的时候,冲击特性越明显,当α=2\alpha=2α=2时退化为一般的高斯噪声,基本看不出冲击特性。
α\alphaα稳定分布概率密度函数
对α\alphaα稳定分布来说,其概率密度函数和特征函数互为傅里叶变换对,因此对特征函数进行傅里叶反变换之后就可以得到其概率密度函数的表达式为
f(x,α,β)=1π∫0∞exp(−tα)cos[xt+βtαω(t,α)]dtf(x,\alpha ,\beta )=\frac{1}{\pi }\int_{0}^{\infty }{\exp }\left( -{{t}^{\alpha }} \right)\cos \left[ xt+\beta {{t}^{\alpha }}\omega (t,\alpha ) \right]\text{d}tf(x,α,β)=π1∫0∞exp(−tα)cos[xt+βtαω(t,α)]dt
显然,该式是关于变量xxx和参数β\betaβ的偶函数,即f(x,α,β)=f(−x,α,β)f\left( x,\alpha ,\beta \right)=f\left( -x,\alpha ,\beta \right)f(x,α,β)=f(−x,α,β),同时可以证明f(x,α,β)f\left( x,\alpha ,\beta \right)f(x,α,β)是有界的,且任意阶倒数均存在。
同时,概率密度函数在大多数条件下并不存在封闭的显式,有几种特殊情况如下:
{f(x)=(γ2π)1/21(x−a)3/2exp[−γ2(x−a)] α=12f(x)=γ{π[(x−a)2+γ2]} α=1f(x)=1(δ2π)exp(−(x−a)22δ2) α=2\left\{ \begin{aligned}
& f\left( x \right)={{\left( \frac{\gamma }{2\pi } \right)}^{1/2}}\frac{1}{{{\left( x-a \right)}^{3/2}}}\exp \left[ -\frac{\gamma }{2\left( x-a \right)} \right]\ \ \ \ \ \ \ \ \ \alpha =\frac{1}{2} \\
& f\left( x \right)=\frac{\gamma }{\left\{ \pi \left[ {{\left( x-a \right)}^{2}}+{{\gamma }^{2}} \right] \right\}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \alpha =1 \\
& f\left( x \right)=\frac{1}{\left( \delta \sqrt{2\pi } \right)}\exp \left( \frac{-{{\left( x-a \right)}^{2}}}{2{{\delta }^{2}}} \right)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \alpha =2
\end{aligned} \right.
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧f(x)=(2πγ)1/2(x−a)3/21exp[−2(x−a)γ] α=21f(x)={π[(x−a)2+γ2]}γ α=1f(x)=(δ2π)1exp(2δ2−(x−a)2) α=2
可以明显看出,在α\alphaα选取一些特殊的值的时候,α\alphaα分布就会退化成一些常见的分布,例如α=2\alpha =2α=2时的高斯分布.
从图中可以看出,当α\alphaα的值越小时,概率密度函数曲线的尖峰越大,但是其拖尾也越厚,也就是所说的“尖峰厚尾”,这个特性在实际中是很有意义的,因为在实际应用中遇到的许多非高斯信号除了拖尾较厚外,与高斯分布十分相似。