Spring AI + Ollama 实现 DeepSeek-R1 API 服务和调用

随着大语言模型的快速发展,越来越多的开发者开始探索如何将这些强大的推理模型本地化运行。DeepSeek-R1,作为一款性能卓越的开源AI模型,以其低成本和出色的推理能力在技术圈内引起了广泛关注。本文将详细介绍如何使用Ollama部署DeepSeek-R1,并结合Spring Boot与Spring AI实现API服务调用,帮助开发者在本地化环境下实现高效的AI服务。

1. DeepSeek-R1 简介及亮点

DeepSeek-R1 是一款开源的AI语言模型,凭借其出色的推理能力和强大的性能,在科技界引起了广泛的关注。它的性能甚至在某些任务上超越了OpenAI的GPT-4等业内领先的语言模型。与其他大型语言模型不同,DeepSeek-R1的最大亮点是它支持本地部署。这意味着用户不仅可以在自己的计算环境中运行模型,还能更好地保护隐私,确保数据不被外部服务访问。

DeepSeek-R1的开源特性使得开发者能够对其进行定制和优化,以满足特定的应用需求。而且,DeepSeek-R1的低成本也使其成为了一个理想的选择,特别适合那些需要高效推理的开发者和小型企业。通过Ollama,DeepSeek-R1可以非常容易地在本地设备上运行,进一步降低了技术门槛。

2. Ollama:运行助手

对于许多用户来说,在普通笔记本电脑或其他本地硬件上运行强大的AI模型通常是一个难题。传统的大模型如GPT-4、BERT等需要强大的计算资源和复杂的部署步骤,这让很多开发者望而却步。Ollama的出现正是为了解决这一问题,它为本地部署大语言模型提供了一种简单、便捷的

### 使用 Spring 框架集成调用 DeepSeek-R1 API 服务 #### 创建 Spring Boot 项目并配置依赖 为了开始这个过程,在构建工具中初始化一个新的 Spring Boot 应用程序。通过 Spring Initializr 可以轻松完成这一步骤,同时确保 pom.xml 文件内包含了必要的依赖项以便支持与 DeepSeek-R1 的交互[^2]。 ```xml <dependency> <groupId>com.spring.ai</groupId> <artifactId>spring-ai-core</artifactId> <version>${spring-ai.version}</version> </dependency> ``` 上述 XML 片段展示了如何向 Maven 构建文件添加 `spring-ai-core` 依赖,这是用于处理人工智能相关功能的关键库之一。 #### 配置应用程序属性 在 src/main/resources/application.properties 或 application.yml 文件里定义连接至 DeepSeek-R1 所需的服务端点其他必要参数: ```yaml deeplearn: api-url: http://localhost:8080/deepseek-r1/api/v1/ key: your_api_key_here ``` 此部分设置允许开发者指定目标 API 地址以及访问密钥等重要信息。 #### 编写 REST 客户端代码 接下来编写一段简单的 Java 类用来封装 HTTP 请求逻辑并与远程服务器通信。这里推荐采用 RestTemplate 来简化网络请求的操作: ```java @Service public class DeepSeekClient { private final String apiUrl; private final String apiKey; @Autowired public DeepSeekClient(@Value("${deeplearn.api-url}") String apiUrl, @Value("${deeplearn.key}") String apiKey) { this.apiUrl = apiUrl; this.apiKey = apiKey; } public ResponseEntity<String> callApi(String endpoint, HttpMethod method, Object requestPayload){ RestTemplate restTemplate = new RestTemplate(); HttpHeaders headers = new HttpHeaders(); headers.setContentType(MediaType.APPLICATION_JSON); headers.set("Authorization", "Bearer " + apiKey); HttpEntity<Object> entity = new HttpEntity<>(requestPayload, headers); return restTemplate.exchange(apiUrl + endpoint, method, entity, String.class); } } ``` 这段代码实现了基本的客户端类 `DeepSeekClient` ,它负责发送带有适当头部信息(如 Content-Type Authorization)的 HTTP 请求给 DeepSeek-R1 API,并接收响应数据。 #### 测试接口调用 最后可以通过控制器方法测试新建立起来的数据通路是否正常工作: ```java @RestController @RequestMapping("/api/test") public class TestController { private final DeepSeekClient deepSeekClient; @Autowired public TestController(DeepSeekClient deepSeekClient) { this.deepSeekClient = deepSeekClient; } @GetMapping("/invoke-deepseek") public ResponseEntity<?> invokeDeepSeek() throws Exception{ try { ResponseEntity<String> response = deepSeekClient.callApi("some-endpoint", HttpMethod.GET, null); if (response.getStatusCode().is2xxSuccessful()) { return ResponseEntity.ok(response.getBody()); } else { throw new RuntimeException("Failed to get a successful response from the server."); } } catch (Exception e) { return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(e.getMessage()); } } } ``` 以上就是基于 Spring Boot Spring AIDeepSeek-R1 API 进行集成的一个简单实例说明[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤姆yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值