R-CNN regions with CNN features for detection and segmentation

分析paper:Rich feature hierarchies for accurate object detection and semantic segmentation

                       Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik

R-CNN: Regions with CNN features

insights:

1)Apply CNN features to regions for localization and segmentation

2) When labeled training data is scarce, supervised pre-training + domain-specificfine-tuning... 


### R-CNN 论文下载及相关信息 R-CNN 是一种早期的物体检测框架,其核心思想是结合区域建议(Region Proposal)技术和深度学习中的卷积神经网络(CNN)。最初的 R-CNN 方法由 Ross Girshick 等人在 2014 年提出[^2]。如果需要获取原始论文,可以通过以下方式找到: #### 获取 R-CNN 论文的方法 1. **官方学术资源网站** 可以访问 IEEE Xplore 或者 CVPR 官方会议页面来查找并下载 R-CNN 的原始论文《Rich feature hierarchies for accurate object detection and semantic segmentation》。 2. **开源平台** 如果无法通过付费渠道获得论文,可以尝试在 arXiv 上寻找相关版本。尽管 R-CNN 的初版并未发布在 arXiv 上,但许多后续改进版本如 Fast R-CNN 和 Faster R-CNN 都有公开的预印本链接[^1]。 3. **第三方学术搜索引擎** 使用 Google Scholar (scholar.google.com) 输入关键词 “Rich feature hierarchies for accurate object detection”,即可找到多个可供下载的来源。 #### R-CNN 的主要贡献及其局限性 - R-CNN 提出了将 CNN 应用于目标检测的新范式,即通过 Selective Search 技术生成候选框,并对每个候选框独立提取特征后送入支持向量机(SVM)完成分类任务。 - 尽管取得了显著成果,但也存在明显不足之处:多阶段训练流程复杂;需存储大量中间特征文件占用空间大;每张图像上的所有提议区域都需要分别输入至 CNN 中计算特征耗时严重等问题被后来的工作逐步优化解决[^3]。 以下是实现经典 R-CNN 流程的一个简化伪代码示例: ```python def r_cnn(image): # Step 1: Generate region proposals using selective search algorithm. regions = generate_region_proposals(image) # Step 2: Extract features from each proposal via pre-trained CNN model on ImageNet dataset. cnn_features = [] for region in regions: feature = extract_feature_with_pretrained_CNN(region) cnn_features.append(feature) # Step 3: Train SVM classifiers based on extracted features to predict classes of objects within those bounding boxes. predictions = apply_trained_SVMs(cnn_features) return predictions ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值