在人工智能领域,“Agent"这一术语被专业地翻译为"智能体”。需要说明一下,老IT人都知道,Agent不是啥新词儿。在传统IT系统中,Agent通常指那些部署在终端或服务器上、用于执行特定监控和管理任务的后台程序,比如安全防护、网络流量采集、数据库运维等场景中常见的Agent程序。这些传统Agent主要承担着数据采集、状态监测和指令执行等基础功能。
而当下引发行业热潮的AI Agent则代表着技术的重大演进:它结合了大语言模型的智能认知能力,实现了从被动执行到主动决策的质变。这类新型智能体具备自主任务规划、多工具协调调用、动态环境交互等高级能力,正在智能客服、自动化工作流、商业决策支持等场景展现出革命性的应用价值。这种从传统自动化工具到智能决策体的转变,标志着AI技术正在进入全新的发展阶段。
↓
为什么这么说呢?
我们先来搞懂几个基本问题
↓
有人说,把大模型接入
ERP、OA、销售、财务等传统应用程序
让它变成*一个带脑子(AI)的应用程序*
就是Agent了
这么理解,并不准确
Agent ≠ AI+传统应用
AI+传统应用
如果决策权,还在人类手上
还需要人工操作,比如输入内容和指令
那么它就不是真正意义上的Agent
**举个例子:**传统报销系统➕AI脑袋后
能够自动识别发票、匹配报销策略等
但是如果发现“重复报销、业务冲突”等问题
是否通过审核,还需要人类确认
那它就只是个
【智能应用】或【半自主*Agent】*
算不上Agent
Agent就不同
它可以感知环境、独立决策、自主行动
Agent有三大核心特征
***①能感知:*能实时读取环境信息(如文本输入、语音、视觉等)
***②能决策:*基于感知和目标,自己规划下一步要干嘛
***③能执行:*主动采取行动,可以不等人类下指令
这三大核心特征
决定了它能“像个人”一样做事
比如,现在你有一个出差报销
*Agent负责员工的财务报销*
它是如何来跑整个闭环的?
↓
①感知:像眼观六路的助理
你的发票集、OA里的出差行程单、邮件会议记录它都能识别出来
②决策:像个懂财务制度的老员工
知道该怎么处理
感知完信息后,它开始判断
③执行:决策完,它就动手干活了
自动生成报销单→发起审批流程→发消息提醒领导审批→打回重新弄→报销款打到你卡上…
全程不需要你点一次按钮
自己就能把流程跑完
整个过程下来
它是不是像个人在做事,而且是个靠谱的人
传统程序是“人用工具做事”
虽然整个流程电子化了
但程序不会主动帮你判断
只是按规则走流程
Agent智能体就很有人味了
“像人一样帮你做事”
具有更高的自主性
可以自动规划和执行任务
于是,我们得到这样一个对比表
*传统应用* vs Agent智能体
Agent本质上有两大类:软件丨硬件
软件,以数字员工、数字助理、AI助手为代表
硬件,以机器人、自动驾驶为代表
嵌入到设备中,感知并控制物理世界
各种行业各种场景Agent很多
就像之前多如牛毛的行业传统应用一样
Agent是大趋势吗?是该追的风口吗?
答案是肯定的
前几天,英伟达老黄在GTC 2025发布会
展示了一张图,得到业界广泛认同
人工智能(AI)发展路径
↓
1、2012 AlexNet:这是深度学习领域的重要突破,基于卷积神经网络(CNN)
2、感知 AI(Perception AI):代表是摄像头图像识别,和语音识别等
3、生成式 AI(Generative AI):代表是ChatGPT、DeepSeek这样的AI可以生成文本、图像和其他内容
4、代理 AI(Agentic AI):代表是Agent智能体,这类AI可以执行更复杂的任务
5、物理 AI(Physical AI):代表是自动驾驶、通用机器人等
看到这里,大家可能又有疑问了
代理 AI(Agentic AI)和Agent啥关系呀?
Agentic AI 是 Agent 的子集
代表更高级的智能体形态
强调更高度自主性、主动决策的AI系统
甚至能自己总结经验、持续优化
举个例子,看自主程度
Agent:能做到温度>30°C,自动开空调
Agentic AI:可基于模糊目标而行动
今天天气很闷热,开空调
**从即将过去的2025年第一Q来看
**
智能化成了甲方最舍得花钱的地方
从信息化→到智能化,虽然喊了很多年
却始终停留在PPT层面
而临界点来自DeepSeek的冲击波
整个行业第一次,包括甲方和乙方
真切感受到“智能”的威力
这波围绕大模型的智能化建设
已不是PPT,成为预算里的刚需建设项
所以在智能化建设的大背景下
Agent市场空间巨大
①海量老应用可以改造成智能体,你敢想?
海量的OA、CRM、财务系统、供应链…
等着我们去改造
②还有无限创新的场景,等你去发挥!
总之可以预见在近三年
智能=巨大生意机会
智能将全面渗透到
基础设施、软硬件平台、各类服务中去
智能体、智能云、智能架构、智能网络、智能存储、智能安全…
随着大模型的持续火爆,各行各业纷纷开始探索和搭建属于自己的私有化大模型,这无疑将催生大量对大模型人才的需求,也带来了前所未有的就业机遇。**正如雷军所说:“站在风口,猪都能飞起来。”**如今,大模型正成为科技领域的核心风口,是一个极具潜力的发展机会。能否抓住这个风口,将决定你是否能在未来竞争中占据先机。
那么,我们该如何学习大模型呢?
人工智能技术的迅猛发展,大模型已经成为推动行业变革的核心力量。然而,面对复杂的模型结构、庞大的参数量以及多样的应用场景,许多学习者常常感到无从下手。作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。
为此,我们整理了一份全面的大模型学习路线,帮助大家快速梳理知识,形成自己的体系。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
大型预训练模型(如GPT-3、BERT、XLNet等)已经成为当今科技领域的一大热点。这些模型凭借其强大的语言理解和生成能力,正在改变我们对人工智能的认识。为了跟上这一趋势,越来越多的人开始学习大模型,希望能在这一领域找到属于自己的机会。
L1级别:启航篇 | 极速破界AI新时代
- AI大模型的前世今生:了解AI大模型的发展历程。
- 如何让大模型2C能力分析:探讨大模型在消费者市场的应用。
- 行业案例综合分析:分析不同行业的实际应用案例。
- 大模型核心原理:深入理解大模型的核心技术和工作原理。
L2阶段:攻坚篇 | RAG开发实战工坊
- RAG架构标准全流程:掌握RAG架构的开发流程。
- RAG商业落地案例分析:研究RAG技术在商业领域的成功案例。
- RAG商业模式规划:制定RAG技术的商业化和市场策略。
- 多模式RAG实践:进行多种模式的RAG开发和测试。
L3阶段:跃迁篇 | Agent智能体架构设计
- Agent核心功能设计:设计和实现Agent的核心功能。
- 从单智能体到多智能体协作:探讨多个智能体之间的协同工作。
- 智能体交互任务拆解:分解和设计智能体的交互任务。
- 10+Agent实践:进行超过十个Agent的实际项目练习。
L4阶段:精进篇 | 模型微调与私有化部署
- 打造您的专属服务模型:定制和优化自己的服务模型。
- 模型本地微调与私有化:在本地环境中调整和私有化模型。
- 大规模工业级项目实践:参与大型工业项目的实践。
- 模型部署与评估:部署和评估模型的性能和效果。
专题集:特训篇
- 全新升级模块:学习最新的技术和模块更新。
- 前沿行业热点:关注和研究当前行业的热点问题。
- AIGC与MPC跨领域应用:探索AIGC和MPC在不同领域的应用。
掌握以上五个板块的内容,您将能够系统地掌握AI大模型的知识体系,市场上大多数岗位都是可以胜任的。然而,要想达到更高的水平,还需要在算法和实战方面进行深入研究和探索。
- AI大模型学习路线图
- 100套AI大模型商业化落地方案
- 100集大模型视频教程
- 200本大模型PDF书籍
- LLM面试题合集
- AI产品经理资源合集
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,全面覆盖了AI大模型的理论探索、技术落地与行业实践等多个维度。无论您是从事科研工作的学者、专注于技术开发的工程师,还是对AI大模型充满兴趣的爱好者,这套报告都将为您带来丰富的知识储备与深刻的行业洞察,助力您更深入地理解和应用大模型技术。
三、大模型经典PDF籍
随着人工智能技术的迅猛发展,AI大模型已成为当前科技领域的核心热点。像GPT-3、BERT、XLNet等大型预训练模型,凭借其卓越的语言理解与生成能力,正在重新定义我们对人工智能的认知。为了帮助大家更高效地学习和掌握这些技术,以下这些PDF资料将是极具价值的学习资源。
四、AI大模型商业化落地方案
AI大模型商业化落地方案聚焦于如何将先进的大模型技术转化为实际的商业价值。通过结合行业场景与市场需求,该方案为企业提供了从技术落地到盈利模式的完整路径,助力实现智能化升级与创新突破。
希望以上内容能对大家学习大模型有所帮助。如有需要,请微信扫描下方CSDN官方认证二维码免费领取相关资源【保证100%免费
】。
祝大家学习顺利,抓住机遇,共创美好未来!