智能体系统架构设计指南:从原理到工程实现

本文将深入解析当前主流的企业级AI应用架构设计。以下绘制的系统架构示意图,可供参考:

img
在探讨企业AI应用架构之前,需要明确两个关键概念:广义的AI应用范畴包含传统意义上的智能体系统。当前企业开发AI解决方案通常面临三类典型场景:

1)对现有业务系统进行AI能力增强
2)集成第三方AI服务或工具
3)基于业务数据从零构建AI应用

本文将展示的架构设计完整覆盖了上述所有应用场景,接下来将进行详细技术解析。

架构详解:

img

1、应用网关,主要负责处理用户发过来的请求,流量进入API应用网关之后,网关除了会进行一些传统的鉴权、安全、限流等处理之外,更重要的是要将用户请求,路由到对应的Agent业务。

而现在编写AI Agent可以有多种方式,主流是纯编码或低代码、或二者混合的方式。如果你的业务逻辑简单,包装Dify这种低代码平台进行创建Agent即可;如果想进行精准控制,灵活性和可控性强,一定是编码方式自己写(例如使用LangChain这种框架)。现在大多数场景下,企业用的是低代码平台+编码方式这两种混合的方式,不同业务、不同类型的Agent,选取合适的构建方式。

img

2、无论用哪种方式实现,AI Agent接收到请求后,发送给MCP网关,目的是先要获取可用的MCP Server信息和MCP Tool的信息。

3、可选操作,因为MCP网关可能维护了很多MCP信息,可以借助于LLM缩小MCP范围,减少Token消耗,所以可以向LLM网关发请求和LLM交互。

4、MCP网关将确定好范围的MCP Server及MCP Tool的信息列表返回给AI Agent。

img

5、AI Agent将用户的请求信息和从MCP网关处拿到的所有MCP信息通过LLM网关发送给大模型。

6、大模型经过推理后,将根据用户传入的请求信息,返回相关的解决问题的MCP Server和MCP Tool信息。

img

7、AI Agent拿到了确定的MCP Server和MCP Tool信息后,通过MCP网关对该MCP Tool做请求,返回需要的数据。

**实际使用整体的流程上,会重复2~7间的步骤,多次循环。**全景图如下:

img

后续还有一些流程没有讲到,例如通过上面第7步通过多次循环调用获取到各业务数据之后,最后再次通过LLM网关调用大模型,由大模型将信息统一进行处理后返回给终端。通过MCP调用服务获取数据时,这里特别说明一下,如果是微服务架构,需要将MCP Server注册到注册中心才可以,否则无法发现后面的各业务微服务。img聊了这么久,可能有的小伙伴还不知道MCP是什么,简单补充下知识点:MCP(Model Context Protocol),就是一个开源协议,可以方便大模型用标准化的方式连接到各种外部数据源和工具,否则之前,主要是API访问的方式为主。img至于MCP最后会不会一统天下,成为一个国际的标准现在还不好说,但是现在在业界的认可程度很高,很多厂商纷纷接入。除此之外,还有最近新提出的A2A(Agent to Agent)和AG-UI(Agent to UI)协议。整体来说在AI发展的过程中还是比较混乱的,各种新概念和协议层出不穷,有的只是一时的,有的或许最后就成为一种标准了,但这都不好说,所以为了稳妥起见,再给大家提供下面最传统的不依赖于MCP通信的架构。img这个架构就没什么过多解释的了,也画的比较简单,AI Agent可以直接连接数据源获取数据,也可以通过API的方式获取数据(访问其他服务)。----最后总结一下,无论哪种架构(区别在于是不是用MCP方式去访问),都覆盖了企业常用的几种场景,AI应用在获取数据时,可直接连接数据源获取数据,AI应用接入企业内部各系统获取数据(图中举例的现有业务微服务方式和其他方式)和接入第三方服务。仅供大家可以参考。

随着大模型的持续火爆,各行各业纷纷开始探索和搭建属于自己的私有化大模型,这无疑将催生大量对大模型人才的需求,也带来了前所未有的就业机遇。**正如雷军所说:“站在风口,猪都能飞起来。”**如今,大模型正成为科技领域的核心风口,是一个极具潜力的发展机会。能否抓住这个风口,将决定你是否能在未来竞争中占据先机。

那么,我们该如何学习大模型呢

人工智能技术的迅猛发展,大模型已经成为推动行业变革的核心力量。然而,面对复杂的模型结构、庞大的参数量以及多样的应用场景,许多学习者常常感到无从下手。作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。

为此,我们整理了一份全面的大模型学习路线,帮助大家快速梳理知识,形成自己的体系。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

大型预训练模型(如GPT-3、BERT、XLNet等)已经成为当今科技领域的一大热点。这些模型凭借其强大的语言理解和生成能力,正在改变我们对人工智能的认识。为了跟上这一趋势,越来越多的人开始学习大模型,希望能在这一领域找到属于自己的机会。

L1级别:启航篇 | 极速破界AI新时代

  • AI大模型的前世今生:了解AI大模型的发展历程。
  • 如何让大模型2C能力分析:探讨大模型在消费者市场的应用。
  • 行业案例综合分析:分析不同行业的实际应用案例。
  • 大模型核心原理:深入理解大模型的核心技术和工作原理。

在这里插入图片描述

L2阶段:攻坚篇 | RAG开发实战工坊

  • RAG架构标准全流程:掌握RAG架构的开发流程。
  • RAG商业落地案例分析:研究RAG技术在商业领域的成功案例。
  • RAG商业模式规划:制定RAG技术的商业化和市场策略。
  • 多模式RAG实践:进行多种模式的RAG开发和测试。
    在这里插入图片描述

L3阶段:跃迁篇 | Agent智能体架构设计

  • Agent核心功能设计:设计和实现Agent的核心功能。
  • 从单智能体到多智能体协作:探讨多个智能体之间的协同工作。
  • 智能体交互任务拆解:分解和设计智能体的交互任务。
  • 10+Agent实践:进行超过十个Agent的实际项目练习。在这里插入图片描述

L4阶段:精进篇 | 模型微调与私有化部署

  • 打造您的专属服务模型:定制和优化自己的服务模型。
  • 模型本地微调与私有化:在本地环境中调整和私有化模型。
  • 大规模工业级项目实践:参与大型工业项目的实践。
  • 模型部署与评估:部署和评估模型的性能和效果。在这里插入图片描述

专题集:特训篇

  • 全新升级模块:学习最新的技术和模块更新。
  • 前沿行业热点:关注和研究当前行业的热点问题。
  • AIGC与MPC跨领域应用:探索AIGC和MPC在不同领域的应用。在这里插入图片描述

掌握以上五个板块的内容,您将能够系统地掌握AI大模型的知识体系,市场上大多数岗位都是可以胜任的。然而,要想达到更高的水平,还需要在算法和实战方面进行深入研究和探索。

[👉点击即可获取大模型学习包2025年最新版👈]

  1. AI大模型学习路线图
  2. 100套AI大模型商业化落地方案
  3. 100集大模型视频教程
  4. 200本大模型PDF书籍
  5. LLM面试题合集
  6. AI产品经理资源合集

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,全面覆盖了AI大模型的理论探索、技术落地与行业实践等多个维度。无论您是从事科研工作的学者、专注于技术开发的工程师,还是对AI大模型充满兴趣的爱好者,这套报告都将为您带来丰富的知识储备与深刻的行业洞察,助力您更深入地理解和应用大模型技术。
在这里插入图片描述

三、大模型经典PDF籍

随着人工智能技术的迅猛发展,AI大模型已成为当前科技领域的核心热点。像GPT-3、BERT、XLNet等大型预训练模型,凭借其卓越的语言理解与生成能力,正在重新定义我们对人工智能的认知。为了帮助大家更高效地学习和掌握这些技术,以下这些PDF资料将是极具价值的学习资源。

img

四、AI大模型商业化落地方案

AI大模型商业化落地方案聚焦于如何将先进的大模型技术转化为实际的商业价值。通过结合行业场景与市场需求,该方案为企业提供了从技术落地到盈利模式的完整路径,助力实现智能化升级与创新突破。在这里插入图片描述

img
希望以上内容能对大家学习大模型有所帮助。如有需要,请微信扫描下方CSDN官方认证二维码免费领取相关资源【保证100%免费】。

在这里插入图片描述
祝大家学习顺利,抓住机遇,共创美好未来!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值