程序员必看:大模型推理引擎全解析+选型指南,建议收藏!

本文深入解析大模型推理引擎技术原理与选型策略,对比vLLM、TensorRT-LLM、SGLang和TGI四大引擎特点,从内存管理、批处理、量化与硬件适配等维度分析核心技术差异,并基于不同场景提供针对性选型建议,同时展望技术演进与生态发展,为企业高效部署大模型提供全面指导。


---------------目录-----------------

一、引言

1、推理引擎的核心定位与价值

2、核心矛盾与技术挑战

二、推理引擎基础

1、核心概念与推理流程

2、性能评估指标

三、主流推理引擎详解

1、vLLM

2、TensorRT-LLM

3、SGLang

4、Text Generation Inference(TGI)

四、核心技术对比

1、内存管理技术

2、批处理技术

3、量化与硬件适配

五、选型指南

1、关键选型因素

2、典型场景推荐

六、未来趋势

1、技术演进方向

2、生态与产业影响

---------------正文---------------

一、引言

随着生成式 AI 的飞速发展,大语言模型(LLM)在企业服务、科研探索及个人开发中实现了规模化应用,但其高效部署始终面临核心挑战:如何在保持模型输出准确性的前提下,平衡推理性能、资源成本与硬件适配能力。

这一矛盾在 2023 年前的通用框架(如 Hugging Face Transformers)中尤为突出——此类框架普遍存在推理速度慢、显存碎片化、并发处理能力弱等瓶颈,难以满足大规模商业化落地需求,由此催生了专用推理引擎的技术演进必然性。

1、推理引擎的核心定位与价值

推理引擎作为连接"模型研发"与"产业应用"的核心枢纽,其本质是通过软硬件协同优化,在多样化硬件环境中实现大模型的高效推理部署。

具体而言,其核心目标包括:在保证输出质量的前提下最大化推理速度与吞吐量、降低显存占用与计算成本、提升多场景并发处理能力。

2、核心矛盾与技术挑战

大模型推理的关键矛盾在于用户体验与企业成本的平衡:终端用户要求毫秒级响应延迟(如实时聊天机器人),而企业则追求高吞吐以摊薄硬件投入(如批量内容生成)。

典型场景如思维链推理(Chain-of-Thought)需模型反复自我验证,或 AutoGPT 等 AI 助理需频繁调用模型规划任务流程,均会显著放大延迟与成本压力。

实现高效推理的技术挑战主要体现在三方面:

1)模型规模与架构复杂性:参数规模突破 640GB(如 DeepSeek-R1)、混合专家(MoE)及多语言适配(MLA)等特殊架构,对底层 kernels 优化提出极高要求;

2)量化与压缩技术适配:低比特量化(如 4-bit、2-bit)需在精度损失与性能提升间找到最优平衡点;

3)硬件生态碎片化:需同时支持 GPU、CPU、专用加速芯片(如 TPU、FPGA)及边缘设备,适配不同厂商的计算库与驱动环境。

行业共识:推理引擎已成为大模型落地的"技术守门人"。2025 年"推理革命"背景下,开源框架(如 SGLang)与闭源方案的竞争加剧,高性能与轻量化技术路线分化,技术选型直接决定企业服务的市场竞争力。

以下将从性能指标(延迟、吞吐、显存效率)、功能特性(量化支持、动态批处理、多模态适配)、硬件兼容性(NVIDIA/AMD GPU、x86/ARM CPU)及工程落地成本(部署复杂度、社区支持)四个维度,深度剖析主流推理引擎的技术原理与适用场景,为不同规模企业提供可落地的选型指南。

二、推理引擎基础

1、核心概念与推理流程

大模型推理(Inference)是指模型训练完成后,应用于实际任务(如聊天机器人、搜索增强生成等)中输入数据并生成输出结果的过程。

其核心目标是在保持生成内容准确性的前提下,最大化推理速度与计算资源利用率,这一目标贯穿于推理流程的全阶段优化。

1)推理流程的三阶段拆解

推理流程可分为输入预处理、模型执行、输出解码三个核心阶段,各阶段均面临特定技术挑战,需通过针对性优化实现性能突破。

a.输入预处理阶段

该阶段的核心任务是将原始文本转换为模型可处理的数字表示。

具体而言,需通过分词工具(如SentencePiece、BPE)将输入文本切分为离散token,并映射为模型词表中的索引。例如,用户输入的自然语言提示(Prompt)会被转换为固定长度的token序列,为后续神经网络计算提供输入。

b.模型执行阶段

此阶段是推理流程的计算核心,涉及神经网络前向传播与大规模矩阵运算。由于大模型参数规模庞大(如DeepSeek V3总参数671B),GPU常因参数加载占用内存带宽而未充分利用计算资源。

为解决这一问题,业界发展出多种优化技术:

  • 批处理技术:通过将多个推理请求合并,共享已加载的模型参数,显著提高GPU吞吐量。
  • 混合专家模型(MoE)架构:通过激活部分参数实现高效计算,如DeepSeek V3每个token仅激活37B参数(总参数671B)。
  • 内核优化:通过定制化AI算子提升计算效率,如AMD的AI Tensor Engine (AITer) attention kernel优化Llama 4在MI300X GPU上的注意力计算。

c.输出解码阶段

大模型推理采用自回归生成机制,即每个token的生成依赖于历史序列。

该阶段的核心挑战是避免重复计算历史token的中间结果,解决方案是通过Key-Value Cache(KVCache) 缓存已生成token的Key(K)和Value(V)矩阵:

  • 预填充阶段(Prefill):处理用户输入提示时,并行计算所有token的K和V向量并存储到GPU显存。
  • 解码/生成阶段(Decoding):生成新token时,仅计算当前token的Query(Q)向量,与缓存的K向量计算注意力权重,加权求和V向量得到上下文,并将新token的K和V向量追加到Cache。
2)推理与训练的核心差异

推理与训练在目标、资源需求与技术优化方向上存在本质区别,具体差异如下:

推理 vs 训练核心差异

  • 目标导向:训练关注模型参数收敛性与精度,推理关注吞吐量(tokens per second, TPS)、延迟与资源利用率。
  • 计算特性:训练为计算密集型(大量反向传播矩阵运算),推理预填充阶段为计算密集型,生成阶段受内存带宽限制(KV缓存占用显存)。
  • 数据处理:训练可批量处理固定长度数据,推理需动态处理变长输入(如对话场景的上下文变化)。
  • 优化手段:训练依赖分布式并行(如数据/模型并行),推理侧重批处理调度、KV缓存、量化(如FP8/BF16)等轻量化技术。

2、性能评估指标

大模型推理引擎的性能评估需建立系统化的"指标-场景"关联模型,通过多维度指标综合衡量其在不同部署环境下的表现。

核心指标体系涵盖吞吐量、延迟、资源效率及可靠性四大维度。

1)核心性能指标定义与解析

a.吞吐量(Throughput)

作为衡量推理引擎处理效率的核心指标,吞吐量以tokens per second(TPS) 为单位,反映单位时间内生成的token总量,直接决定服务并发能力与硬件资源利用率。

b.延迟(Latency)

延迟指标体系包含三个关键维度,共同决定用户交互体验:

  • 首次token生成时间(Time to First Token, TTFT):从提交查询到接收首个token的耗时(毫秒级),包含请求排队、预填充与网络延迟。
  • 每输出token时间(Time Per Output Token, TPOT):连续token生成的平均间隔,反映解码阶段性能。
  • 端到端延迟(E2E latency):从查询提交到完整响应接收的总耗时。

关键指标关系:TTFT直接影响用户对交互实时性的感知(如聊天机器人首次响应快慢),TPOT决定长文本生成的流畅度,而吞吐量则与服务成本线性相关——同等硬件条件下,吞吐量提升1倍可支撑两倍用户规模,或减少50%服务器投入。

c.资源效率指标

  • 显存占用:决定单卡可部署模型规模与并发量,PagedAttention 3.0技术将显存碎片率降至2%,使显存需求降低30%;
  • 硬件利用率:反映GPU计算核心与内存带宽的利用效率,直接影响单位算力成本。
2)场景化指标权重评估模型

不同应用场景对性能指标的优先级需求差异显著,需建立动态权重体系:

场景类型核心目标吞吐量TTFTTPOT显存占用硬件利用率可靠性
实时交互(如Chatbot)低感知延迟、流畅对话体验
批量处理(如文档摘要)高吞吐量、成本控制
高并发API服务服务稳定性、资源效率
边缘部署(如终端设备)低资源占用、实时响应

三、主流推理引擎详解

1、vLLM

vLLM(Vectorized Large Language Model Inference)是由加州大学伯克利分校开发的高性能大模型推理引擎,核心目标是通过优化内存利用率与计算调度,显著提升大模型推理的吞吐量与并发处理能力,尤其适用于高并发企业级服务场景。

1)技术创新:PagedAttention与内存效率革命

vLLM的核心突破在于PagedAttention技术,其灵感源自操作系统的虚拟内存分页机制,通过将大模型推理中的关键瓶颈——KV缓存(Key-Value Cache)——分割为固定大小的"物理块"(如4MB),并通过"块表"(Block Table)动态映射逻辑序列与物理内存位置,实现显存的高效分配。

这一机制从根本上解决了传统推理框架中KV缓存预留导致的显存碎片化资源浪费问题:传统框架为每个序列预留完整连续显存空间,利用率通常仅60%左右,而PagedAttention通过动态分配使显存利用率提升至95%以上,内存浪费率降至4%以下

以下为传统KV缓存与PagedAttention的显存利用对比:

指标传统KV缓存PagedAttention
显存利用率~60%95%以上
内存浪费率30%-40%<4%
碎片化程度高(连续空间预留)低(动态块映射)
长上下文支持受限(依赖连续空间)原生支持32K+ tokens
并发请求处理能力有限(固定批大小)动态适配(100+请求/GPU)

2)性能提升:连续批处理与GPU利用率最大化

在计算调度层面,vLLM采用Continuous Batching(连续批处理) 技术,彻底颠覆了传统静态批处理的"等待凑批"模式。

传统框架需等待一个批次内所有序列生成完毕才能处理新请求,导致GPU空闲时间占比高;而连续批处理将请求拆解为"Prefill(上下文填充)"和"Decode(token生成)"两个阶段,实时将新到达的请求动态加入处理队列,确保GPU计算单元持续处于高负载状态。

核心性能优势

  • 吞吐量:较HF Transformers提升14-24倍,AMD MI300X与NVIDIA H200在Llama 4上性能相当
  • 延迟:Llama 3 8B模型TTFT同类最佳,P99延迟降低30%+
  • 兼容性:支持30+主流模型(Llama、GPT-2/3、OPT等)及OpenAI API接口

2、TensorRT-LLM

TensorRT-LLM 是 NVIDIA 于 2023 年下半年推出的工业级推理引擎,核心定位为面向 NVIDIA GPU 的深度优化解决方案,以"硬件-软件协同优化"为核心特性,追求极致推理性能。

作为 NVIDIA 生态的关键组件,其开发团队深度整合 GPU 硬件特性与软件栈,已被 Meta、Cohere 等企业用于大规模模型推理优化。

1)深度硬件绑定:释放 NVIDIA GPU 算力潜能

TensorRT-LLM 与 NVIDIA GPU 形成深度技术耦合,专为 A100、H100、GH200 等系列硬件设计,可直接调用 Tensor Core、FP8 计算单元等底层硬件特性。

2)低精度量化技术:平衡显存与速度的核心抓手

量化技术是 TensorRT-LLM 优化显存占用与计算效率的关键手段。

其支持 FP8、INT4 等多种低精度格式,并通过 modelopt 工具链实现量化流程自动化。实际应用中,FP8 量化可将模型内存 footprint 减少约 50%,同时借助硬件原生 FP8 计算单元(如 GH200)实现吞吐量提升;INT4 量化则进一步将显存需求压缩至 FP32 的 1/8,支持更大 batch 大小与更长序列推理。

3)生产级场景适配:实时响应与极致性能需求

TensorRT-LLM 凭借低延迟、高吞吐量特性,成为延迟敏感型生产场景的优选方案,典型如实时对话系统、大规模 API 服务等。

其全链路优化(含预编译、Kernel 融合)可实现亚毫秒级 Token 生成延迟,Meta、Cohere 等企业已将其用于优化用户交互体验。

核心技术特点总结

  • 硬件协同:深度利用 NVIDIA Tensor Core、FP8 计算单元,依赖 CUDA 生态
  • 量化能力:支持 FP8/INT4 低精度,显存占用最高降低 75%
  • 分布式优化:3D 并行+算子融合,千亿模型多卡部署能效提升 40%
  • 场景适配:实时对话、大规模 API 服务等延迟敏感场景

3、SGLang

SGLang 由伯克利 LMSYS.org 团队于 2024 年 1 月发布,是一款聚焦"复杂任务与结构化输出"能力的高性能大模型推理服务框架。

其核心定位为支持复杂提示工程与结构化数据处理,通过创新的缓存机制与专用解码模块,在金融、医疗等高并发实时响应场景中展现出显著优势。

1)核心技术:RadixAttention 缓存机制

SGLang 的性能突破源于其独创的 RadixAttention 缓存机制。该技术通过基数树(Radix Tree)结构对 KV 缓存进行层级化管理,能够精准识别并复用多轮对话中的共享前缀请求。

与传统连续批处理机制(如 vLLM)相比,RadixAttention 结合 LRU(最近最少使用)策略动态优化缓存资源分配,显著提升缓存命中率。在 Llama-7B 模型的多轮对话测试中,其吞吐量较 vLLM 提升 5 倍,处理共享前缀批量请求时吞吐量可达 158,596 token/s,缓存命中率稳定在 75%。

2)结构化输出技术与应用优势

SGLang 针对结构化数据处理需求,内置高性能结构化输出模块。该模块基于 xgrammar 语法系统与有限状态机实现约束解码,结合原生 JSON 解析器,可直接生成符合格式规范的结构化数据。在 JSON 解码任务中,其速度比其他开源方案快 10 倍,能够满足金融领域风险报告自动化生成、医疗领域电子病历标准化提取等复杂自动化工作流需求。

4、Text Generation Inference(TGI)

Text Generation Inference(TGI)是由Hugging Face于2023年初发布的生产级稳定推理服务平台,作为Hugging Face Inference API的核心组件,已在云端推理服务中经过大规模验证。

其核心定位在于为企业提供兼具生态兼容性与部署稳定性的推理解决方案,尤其适合需要快速集成现有模型生态的技术团队。

1)生态兼容性:无缝衔接Hugging Face模型生态

TGI的核心竞争力在于与Hugging Face模型库的深度整合,支持一键部署LLaMA、Falcon、BLOOM等20余种主流模型架构,用户可直接通过模型名称或仓库路径调用推理服务,无需额外适配代码。硬件兼容性方面,TGI覆盖Nvidia CUDA、AMD ROCm、Intel Gaudi及AWS Inferentia等多平台,满足不同企业的硬件配置需求。

2)通用框架升级:2025年多后端支持的技术突破

2025年初,TGI引入vLLM、TensorRT-LLM等高性能后端,从单一推理工具升级为通用推理框架,实现生态兼容性与性能优化的平衡。通过后端切换机制,用户可根据场景需求选择:

  • vLLM后端:优化动态批处理与KV Cache管理,提升高并发场景下的吞吐量;
  • TensorRT-LLM后端:通过TensorRT优化加速,降低复杂模型的推理延迟。
3)易用性对比:中小企业的轻量化选择

与专注性能优化的vLLM或硬件绑定的TensorRT-LLM相比,TGI在部署门槛与生态整合上具有显著优势。

四、核心技术对比

1、内存管理技术

KV Cache作为主流推理引擎的基础内存管理技术,通过缓存历史Token的K和V向量减少重复计算,其内存消耗与批处理大小、序列长度、模型规模及并发数呈正相关。

传统连续内存分配方式在序列长度动态变化时易产生碎片化,显存利用率常低于40%,因此需通过创新技术优化内存效率。

1)核心技术原理与痛点解决

PagedAttention(vLLM) 借鉴操作系统分页机制,将KV Cache划分为固定大小的物理块(如16 tokens/块),通过页表映射逻辑块与非连续物理块,实现动态分配与回收。该技术解决了传统连续分配导致的碎片化问题,显存利用率从40%提升至95%以上,vLLM 3.0版本进一步将碎片率降至2%,显存需求降低30%。

RadixAttention(SGLang) 通过基数树(Radix Tree)管理KV缓存,实现多轮对话中共享前缀的高效复用。基数树索引结构结合LRU驱逐策略,使缓存命中率提升3-5倍,显著优化交互式推理场景下的内存效率。

KV量化技术(TensorRT-LLM等) 采用INT4/FP8等低精度格式存储KV缓存,在保证推理精度损失可控的前提下,将内存占用降低75%。该技术通过量化感知训练或动态量化方法平衡精度与性能,特别适用于长序列处理。

2)技术效果对比与适用场景

不同内存管理技术在显存利用率、适用场景上呈现显著差异,具体对比如下:

技术所属引擎核心优化方向显存利用率提升典型适用场景关键限制
PagedAttentionvLLM动态块分配与碎片控制从<40%→95%+高并发API服务、长上下文推理需块表维护开销
RadixAttentionSGLang多轮对话前缀复用缓存命中率3-5倍交互式对话(如客服、助手)前缀差异大时复用效率下降
KV量化TensorRT-LLM等低精度存储内存占用↓75%超长文档处理(如100k+ tokens)极端低精度可能损失推理质量
动态批处理vLLM/TGI批大小自适应调整GPU利用率↑30%+流量波动大的在线推理服务需平衡延迟与吞吐量

2、批处理技术

批处理技术是大模型推理引擎提升GPU利用率与吞吐量的核心优化手段,其设计直接影响系统在高并发场景下的性能表现。

当前主流批处理策略可分为静态批处理、动态批处理和连续批处理三大类,其中连续批处理通过创新的工作流设计显著突破了传统方法的性能瓶颈。

1)静态批处理:固定批次的效率局限

静态批处理(Static Batching)作为最基础的批处理方式,其核心机制是将推理请求收集并合并为固定大小的批次,当批次填满后统一送入模型执行。

然而,其固有缺陷在于等待机制导致的GPU资源浪费:所有请求必须等待批次中最慢请求完成后才能释放资源,短请求被迫等待长请求,造成GPU计算单元频繁空闲。实验数据表明,静态批处理在生产环境中GPU利用率通常低于50%。

2)连续批处理:动态调度的范式革新

连续批处理(Continuous Batching,又称迭代级调度)通过请求生命周期拆分动态资源回收实现了GPU利用率的跃升。其核心创新在于将推理过程分解为"prefill(预填充)"和"decode(解码)"两个阶段,实时将新到达的请求动态加入处理队列,确保GPU计算单元持续处于高负载状态。

3、量化与硬件适配

1)量化技术:精度与性能的平衡艺术

模型量化通过将权重、激活值或K/V缓存从高精度格式(如FP16/BF16)转换为低精度格式(如INT4/8、FP8),实现内存占用降低与计算效率提升,其核心逻辑围绕"精度损失可控前提下的性能最大化"展开。

主流量化方法与性能表现呈现显著差异:

  • 权重量化:以LMDeploy的weight-only量化和AWQ算法为代表,通过仅对权重进行4-bit量化,在Llama系列模型中实现显存占用降低75%(从FP16的140GB降至35GB),同时推理性能提升2.4倍。
  • 混合精度量化:DeepSeek-V3创新性采用FP8混合精度训练与推理框架,支持act_quant(动态激活量化)、weight_dequant(权重反量化)及fp8_gemm(FP8矩阵乘法),通过128x128 block scaling技术平衡精度与计算效率。
2)硬件适配:生态垄断与多极突围

量化技术的落地效果高度依赖硬件架构与软件栈支持,当前市场呈现"NVIDIA主导、AMD突围、跨平台兼容"的竞争格局。

NVIDIA生态的绝对优势体现在架构-软件协同优化:

  • 硬件创新:Blackwell B200 GPU集成第二代Transformer引擎与FP4 Tensor Core,其GB200 NVL 72系统在Llama 3.1 405B基准测试中吞吐量达H200 NVL 8系统的30倍。
  • 软件壁垒:TensorRT-LLM作为NVIDIA专属推理引擎,提供从量化编译到算子融合的全栈优化,仅支持NVIDIA GPU且需配合CUDA 12.1+

AMD的差异化竞争策略聚焦内存与开放生态:

  • 大内存优势:MI300X(192GB HBM3)和MI325X(256GB HBM3)凭借行业领先的内存容量,支持单节点运行完整400B参数Llama 4模型。
  • 软件生态突破:通过ROCm 6.3+支持vLLM推理引擎,实现INT4/FP8量化与PagedAttention算法兼容。

五、选型指南

1、关键选型因素

构建"决策树模型"引导选型。将选型因素按优先级排序:首先明确硬件环境(如仅有NVIDIA GPU则优先TensorRT-LLM/vLLM),再根据性能需求(如实时场景选低延迟引擎,高并发选高吞吐量引擎),最后考虑易用性与成本。

举例说明:金融实时对话场景(NVIDIA GPU+低延迟→TensorRT-LLM),中小企业快速部署(Hugging Face生态→TGI)。

2、典型场景推荐

按场景拆解需求与引擎匹配逻辑:

高并发在线服务(如智能客服)需平衡吞吐量与成本→vLLM(PagedAttention+连续批处理);

实时对话(如语音助手)需极致低延迟→TensorRT-LLM(NVIDIA硬件深度优化);

边缘部署(如本地文档处理)需低资源占用→Llama.cpp(纯CPU推理);

企业级大规模部署(如多模型服务)需生态与性能兼顾→TGI(多后端支持)+ TensorRT-LLM(核心服务)。

七、未来趋势

1、技术演进方向

分析技术演进的驱动因素(模型规模增长、硬件创新、应用需求)。

MoE支持通过稀疏激活降低推理成本,FP4量化进一步压缩内存,多模态统一推理打破模态壁垒,推理与训练融合(如RLHF直接优化推理效率)提升端到端性能。

结合NVIDIA Blackwell架构和AMD MI350的硬件规划,预测2025-2026年技术落地节奏。

2、生态与产业影响

探讨"技术普惠"与"生态壁垒"的博弈。

开源引擎(如vLLM/SGLang)降低技术门槛,但NVIDIA的TensorRT-LLM凭借硬件绑定形成生态壁垒;AMD通过MI300X+ROCm试图打破垄断,为用户提供多元选择。

最终预测推理引擎将向"通用化框架+硬件专用优化"方向发展,企业需平衡生态依赖与成本控制。

学习大模型 AI 如何助力提升市场竞争优势?

随着新技术的不断涌现,特别是在人工智能领域,大模型的应用正逐渐成为提高社会生产效率的关键因素。这些先进的技术工具不仅优化了工作流程,还极大地提升了工作效率。然而,对于个人而言,掌握这些新技术的时间差异将直接影响到他们的竞争优势。正如在计算机、互联网和移动互联网的早期阶段所展现的那样,那些最先掌握新技术的人往往能够在职场中占据先机。

掌握 AI 大模型技能,不仅能够提高个人工作效率,还能增强在求职市场上的竞争力。在当今快速发展的技术时代,大模型 AI 已成为推动市场竞争力的重要力量。个人和企业必须迅速适应这一变化,以便在市场中保持领先地位。

如何学习大模型 AI ?

在我超过十年的互联网企业工作经验中,我有幸指导了许多同行和后辈,并帮助他们实现个人成长和学习进步。我深刻认识到,分享经验和知识对于推动整个行业的发展至关重要。因此,尽管工作繁忙,我仍然致力于整理和分享各种有价值的AI大模型资料,包括AI大模型入门学习思维导图、精选学习书籍手册、视频教程以及实战学习等内容。通过这些免费的资源,我希望能够帮助更多的互联网行业朋友获取正确的学习资料,进而提升大家的技能和竞争力。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
在这里插入图片描述

一、初阶应用:建立AI基础认知

在第一阶段(10天),重点是对大模型 AI 的基本概念和功能进行深入了解。这将帮助您在相关讨论中发表高级、独特的见解,而不仅仅是跟随他人。您将学习如何调教 AI,以及如何将大模型与业务相结合。

主要学习内容:

  • 大模型AI的功能与应用场景:探索AI在各个领域的实际应用
  • AI智能的起源与进化:深入了解AI如何获得并提升其智能水平
  • AI的核心原理与心法:掌握AI技术的核心概念和关键原理
  • 大模型应用的业务与技术架构:学习如何将大模型AI应用于业务场景和技术架构中
  • 代码实践:向GPT-3.5注入新知识的示例代码
  • 提示工程的重要性与核心思想:理解提示工程在AI应用中的关键作用
  • Prompt的构建与指令调优方法:学习如何构建有效的Prompt和进行指令调优
  • 思维链与思维树的应用:掌握思维链和思维树在AI推理和决策中的作用
  • Prompt攻击与防范策略:了解Prompt攻击的类型和如何进行有效的防范
    在这里插入图片描述
    在这里插入图片描述
    、、、

二、中阶应用:深入AI实战开发

在第二阶段(30天),您将进入大模型 AI 的进阶实战学习。这将帮助您构建私有知识库,扩展 AI 的能力,并快速开发基于 agent 的对话机器人。适合 Python 和 JavaScript 程序员。

主要学习内容:

  • RAG的重要性:理解RAG在AI应用中的关键作用
  • 构建基础ChatPDF:动手搭建一个简单的ChatPDF应用
  • 检索基础:掌握信息检索的基本概念和原理
  • 理解向量表示:深入探讨Embeddings的原理和应用
  • 向量数据库与检索技术:学习如何使用向量数据库进行高效检索
  • 基于 vector 的 RAG 实现:掌握基于向量的RAG构建方法
  • RAG系统的高级扩展:探索RAG系统的进阶知识和技巧
  • 混合检索与RAG-Fusion:了解混合检索和RAG-Fusion的概念和应用
  • 向量模型的本地部署策略:学习如何在本地环境中部署向量模型
    在这里插入图片描述

三、高阶应用:模型训练

在这个阶段,你将掌握模型训练的核心技术,能够独立训练和优化大模型AI。你将了解模型训练的基本概念、技术和方法,并能够进行实际操作。

  • 模型训练的意义:理解为什么需要进行模型训练。
  • 模型训练的基本概念:学习模型训练的基本术语和概念。
  • 求解器与损失函数:了解求解器和损失函数在模型训练中的作用。
  • 神经网络训练实践:通过实验学习如何手写一个简单的神经网络并进行训练。
  • 训练与微调:掌握训练、预训练、微调和轻量化微调的概念和应用。
  • Transformer结构:了解Transformer的结构和原理。
  • 轻量化微调:学习如何进行轻量化微调以优化模型性能。
  • 实验数据集构建:掌握如何构建和准备实验数据集。
    在这里插入图片描述
    在这里插入图片描述

四、专家应用:AI商业应用与创业

在这个阶段,你将了解全球大模型的性能、吞吐量和成本等方面的知识,能够在云端和本地等多种环境下部署大模型。你将找到适合自己的项目或创业方向,成为一名被AI武装的产品经理。

  • 硬件选型:学习如何选择合适的硬件来部署和运行大模型AI。
  • 全球大模型概览:了解全球大模型的发展趋势和主要玩家。
  • 国产大模型服务:探索国产大模型服务的优势和特点。
  • OpenAI代理搭建:学习如何搭建OpenAI代理以扩展AI的功能和应用范围。
  • 热身练习:在阿里云 PAI 上部署 Stable Diffusion
  • 本地化部署:在个人计算机上运行大型模型
  • 私有化部署策略:大型模型的内部部署方法
  • 利用 vLLM 进行模型部署:高效部署大型模型的技术
  • 案例分析:如何在阿里云上优雅地私有部署开源大型模型
  • 开源 LLM 项目的全面部署:从零开始部署开源大型语言模型
  • 内容安全与合规:确保AI应用的内容安全和合规性
  • 算法备案流程:互联网信息服务算法的备案指南
    在这里插入图片描述

通过这些学习内容,您不仅能够掌握大模型 AI 的基本技能,还能够深入理解其高级应用,从而在市场竞争中占据优势。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你无疑是AI领域的佼佼者。然而,即使你只能完成60-70%的内容,你也已经展现出了成为一名大模型AI大师的潜力。

最后,本文提供的完整版大模型 AI 学习资料已上传至 CSDN,您可以通过微信扫描下方的 CSDN 官方认证二维码免费领取【保证100%免费】在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值