多个性状的曼哈顿图合并如何做?

本文介绍了如何使用CMplot包在R语言中绘制单个和多个性状的曼哈顿图。首先,通过示例数据展示了数据准备过程,然后详细解释了如何绘制单性状和多性状的曼哈顿图,包括设置阈值、合并图例以及去掉图例的方法。最后,讨论了这种可视化方法在比较不同环境或遗传相关性状研究中的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里,我们用示例数据,介绍一下CMplot对多个性状进行曼哈顿图。

出图的示例:

1. 数据准备

这里用CMplot的示例数据,数据格式:

行头分别是:

  • SNP,SNP名称
  • Chromosome,染色体的名称
  • Position,物理位置
  • 其它几列是不同性状的P值,比如这里分别是trait1,trait2,trait3三个性状的P值

这里,随机选择10000个位点,进行作图:

# 挑选10000个位点
library(tidyverse)
set.seed(123)
dd = pig60K %>% sample_n(10000)

2. 绘制单性状曼哈顿图

这里,选择前四列,第四列为trait1的P值。

阈值为0.05/SNP的个数。

CMplot(dd[,1:4],plot.type = "m",threshold = c(0.05/nrow(dd)))

3. 多个性状合并曼哈顿图

这里,将multracks = TRUE,设置一下,出两个图,一个是按照顺序叠加图,一个是同一个坐标下合并图。

CMplot(dd,plot.type="m", 
       threshold=c(0.05)/nrow(dd),
       multracks=TRUE, 
       file.output=TRUE)

叠加图:
三个性状的曼哈顿图,按照顺序进行了合并。最上面为trait1,中间为trait2,下面为trait3.

合并曼哈顿图:

三个性状的曼哈顿图合并到了一张图上,用不同的颜色表示。蓝色的为trait1,黄色的为trait2,紫色的为trait3

4. 去掉多性状曼哈顿图的图例

CMplot中没有专门去掉图例的参数,但是可以设置:trait.legend.ncol 去指定图例的位置,设置比较大时,图例就不显示在图片上了,比如:

CMplot(dd,plot.type="m", 
       threshold=c(0.05)/nrow(dd),
       multracks=TRUE, cir.legend = FALSE,
       trait.legend.ncol = 120,
       file.output=TRUE)

5. 应用场景介绍

同一个性状,在不同的环境中定位了GWAS显著性位点,想着曼哈顿图上看一下相关趋势,将不同环境的结果合并在一起,用不同的颜色表示,更直观。

多个性状,有遗传相关,通过合并曼哈顿图的形式,展示趋势,更直观。

<think>好的,我需要回答用户关于圈状曼哈顿图的实现方法和工具的问题。首先,我得确认圈状曼哈顿图的定义和应用场景。曼哈顿图通常用于基因组学中展示全基因组关联分析(GWAS)的结果,而圈状曼哈顿图可能是指将传统的曼哈顿图环形化,使得数据在圆形布局中呈现,这样的可视化方式可能更紧凑或美观。 接下来,我需要考虑用户可能需要的工具和步骤。常见的绘图工具包括R语言的ggplot2、Python的matplotlib或第三方库如circos,还有在线工具。用户可能需要具体的代码示例和实现步骤。 然后,我需要验证这些工具是否支持环形布局。例如,在R中,可以使用ggplot2结合coord_polar函数将直角坐标系转换为极坐标系,从而生成环形图。Python的matplotlib也有类似的极坐标子图功能。另外,circos本身是一个专门用于环形数据可视化的工具,可能更适合复杂的基因组数据。 另外,还要考虑数据准备的步骤,比如如何将GWAS结果整理成适合绘图的格式,可能需要染色体位置、p值等数据。对于环形布局,可能需要调整坐标轴,将染色体分布在圆周上,p值用半径表示。 用户可能还关心颜色分配、标签显示、显著性阈值线等细节。例如,不同染色体用不同颜色区分,显著点高亮显示。这些在代码示例中需要体现。 需要检查是否有相关的包或库已经实现了圈状曼哈顿图,比如在R中的CMplot包,可能直接支持这种图形。如果有现成的解决方案,应该优先推荐,节省用户时间。 最后,生成相关问题,可能涉及优化可视化效果、处理大数据集的方法、与其他图表类型的比较等。要确保问题具有针对性,帮助用户深入理解主题。</think>### 圈状曼哈顿图的实现方法 圈状曼哈顿图(Circular Manhattan Plot)是传统曼哈顿图的环形变体,常用于基因组学领域展示全基因组关联分析(GWAS)结果,通过环形布局突出染色体分布与显著性位点的关联性[^1]。 --- #### **实现工具与方法** 1. **R语言(ggplot2 + CMplot包)** - **CMplot包**专为曼哈顿图设计,支持环形布局: ```R # 安装包 install.packages("CMplot") # 绘制圈状曼哈顿图 CMplot::CMplot(data, plot.type="c", chr.labels=paste("Chr",1:22), threshold=c(5e-8, 1e-5), cir.legend=TRUE) ``` - `data`需包含染色体编号(`CHR`)、位点位置(`BP`)和p值(`P`)三列。 - `threshold`参数用于标注显著性阈值线(如$5 \times 10^{-8}$)。 2. **Python(Matplotlib + BioCircos)** - **BioCircos**库支持基因组数据的环形可视化: ```python from BioCircos import BioCircos import pandas as pd data = pd.read_csv("gwas_results.csv") tracks = [BioCircos.ManhattanTrack("GWAS", data['CHR'], data['BP'], data['P'])] BioCircos.BioCircos(tracks, genome="hg38").show() ``` - 数据需预处理为染色体编号、位点坐标和p值。 3. **Circos(专业基因组可视化工具)** - 通过配置文件定义环形布局: ```text <plot> type = scatter file = gwas_data.txt r0 = 0.8r r1 = 1r </plot> ``` - 需将数据转换为Circos支持的格式(如染色体区间文件)。 --- #### **关键步骤** 1. **数据准备**:整理GWAS结果,包含染色体、位点、p值。 2. **颜色映射**:不同染色体分配不同颜色。 3. **显著性标注**:添加水平线(如$-\log_{10}(5 \times 10^{-8})$)。 4. **交互优化**(可选):使用Plotly或D3.js添加悬停标签。 --- #### **应用场景** - 基因组学:展示SNP位点与疾病的关联强度。 - 数据压缩:环形布局节省空间,适合组数据对比[^2]。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值