
courera习题答案及其解析
Amandayyt
最开心的事情就是每天吃好,玩好,睡好,美美哒,程序无bug
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
exercise4
又是周一了,又来这里开始做题啦。这次做的exercise4,开始正式进入神经网络的世界。原创 2017-07-25 10:12:48 · 434 阅读 · 0 评论 -
exercise3
这次练习的重点是多分类问题和神经网络的实现randperm(n):随机打乱一个数字序列,结果是从1到n随机打乱得到的一个数字序列。首先需要了解one VS all的核心思想和步骤。这就是之前学习的线性拟合的升级版。对于之前的线性拟合来说,指的是知道X和y,不断调整参数使得X向量经过计算可以得到对应的y。这次的应用背景是对20X20的图片进行识别。所以每一个X向量共有401个原创 2017-07-21 15:25:01 · 338 阅读 · 0 评论 -
exercise1
一个最简单的线性拟合1.单位矩阵,使用eye函数实现2.绘制曲线,使用原创 2017-07-21 10:51:24 · 362 阅读 · 0 评论 -
全部exercise的总结
这几天,第二次刷完了courera的8个习题,收获还是蛮大的。一最先学习的就是线性回归,也是理解最透彻的一个。线性回归的根本目的就是使得样本集中尽可能多的点集中分布在所画的线上。所以先推出来一个式子就是Y = WX + b。而我们要做的就是让计算得出的Y与真实的y的差距尽可能小。所以我们引入了损失函数,为了避免正负的影响,我们使用平方项,为了求导简单,我们使用1/2的系数。那么如何原创 2017-07-27 15:53:52 · 629 阅读 · 0 评论 -
exercise5
这次习题的目的在最一开始并没有搞清楚。根据ex5这个函数对所有函数的调用,走一步看一步,首先就是对只有一维的简单的X进行建模。在这次建模过程中,又复习了损失函数和梯度的计算式。一切直接拿一个式子就可以计算出来。以后会遇到很多很多不同维度的计算,在计算的时候想一下式子的物理意义就比较容易计算出来了。theta_temp = [zeros(size(theta,2));theta(2:end)原创 2017-07-25 16:28:11 · 584 阅读 · 0 评论 -
exercise8补充
第一部分为高斯分布。给出了共有m个,n维的训练数据,需要对其中的每一个x进行预测。第一步就是对每一个维度的x求解平均值和标准差。这个任务在estimateGaussian中完成。上午开了一上午的会,到现在继续。上次有一个函数的作用没有理解透彻。上次遇见的函数是bsxfun,对于这个函数来说,处理机制是这样的。当两个参数维度相同时,直接各个位置对应运算,但是维度不同的时候,使用条件是两个参数原创 2017-07-27 14:52:16 · 932 阅读 · 0 评论 -
exercise8
最后一个练习了,已经有一点精疲力尽了,但还是想一鼓作气的做完,今天准备将题目先做完,明天研究一下整个文件,感觉整个文件的难度比较大,但是需要实现的部分还是比较简单的。第一个函数,estimateGaussian,就是计算平均值和方差,在这里注意使用恰当的函数可以很好的加快速度和使得代码简洁化。第二个函数就是根据查全率和查准率来的,直接带入公式就好。最后一个函数就是cofiCostFun原创 2017-07-26 20:52:44 · 348 阅读 · 0 评论 -
exercise7
开始聚类和PCA的学习了,后面的确越来越难了。但是聚类的原理还算是比较简单的。聚类的联系比较简单。题目完成了几乎所有麻烦的部分,我们需要做的就是算法的精华部分,总共有两点:1.找到与一个点最近的中心点2.对这些暂时在一类的点求取一个平均值,将这个平均值更新为中心点之后就进行PCA的学习了,主要目的就是将三维数据在保证最大精确度的情况下投影到二维空间中。函数都是很简单的,几乎都是原创 2017-07-26 20:03:01 · 460 阅读 · 0 评论 -
exercise6
今天开始做courera的exercise6。刚做的时候吓一跳,做了一下心理建设,是时候会一会SVM了,吼吼吼吼吼吼吼吼。在开头就是使用SVM进行分类操作。样本有两个属性,要把样本分成正例和反例。代码实在看不懂,所以上网先学习一下什么是SVM。原创 2017-07-26 15:44:37 · 454 阅读 · 0 评论 -
exercise2
补充知识:options函数:创建或者编辑一个最优化参数选项。options = optimset('param1',value1,'param2',value2,...) %设置所有参数及其值,未设置的为默认值options = optimset('GradObj', 'on', 'MaxIter', 400);在使用options的函数中,参数是由用户自行定义的,最大递原创 2017-07-21 11:44:28 · 545 阅读 · 0 评论