最短路问题 Floyd算法与Dijkstra算法代码(leetcode 743)

本文详细介绍了Floyd算法和Dijkstra算法的工作原理及应用场景。Floyd算法用于解决全源最短路径问题,适用于计算大规模网络中任意两点间的最短路径;Dijkstra算法则针对单源最短路径问题,能够高效地找出从一个特定节点到其他所有节点的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最短路的实际应用:

题目描述:

在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

输入:

输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。输入保证至少存在1条商店到赛场的路线。
当输入为两个0时,输入结束。

输出:

对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间。

样例输入:

2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0

样例输出:

3
2

 Floyd算法:

算法原理:

我们首先分析时间复杂度。Floyd算法是一个三重循环,N为节点的个数。所以时间复杂度为O(N^3),空间复杂度为O(N^2).题中节点个数为100.时间复杂度在可以接收的范围内。

但是若节点格式若是大于200,则很有可能会因为效率问题而超时。

#include <iostream>
#include <cstdio>
using namespace std;
int ans[101][101];

int main()
{
    int n,m,a,b,c;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(n==0&&m==0) break;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                ans[i][j]=-1;
            }
            ans[i][i]=0;
        }
        while(m--)
        {
            cin>>a>>b>>c;
            ans[a][b]=ans[b][a]=c;
        }
        for(int k=1;k<=n;k++)
        {
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if(ans[i][k]==-1||ans[k][j]==-1)
                    continue;
                    if(ans[i][j]==-1||ans[i][k]+ans[k][j]<ans[i][j])
                    ans[i][j]=ans[i][k]+ans[k][j];
                }

            }
        }
        cout<<ans[1][n]<<endl;
    }
    return 0;
}


当Floyd算法完成后,所有节点对之间的最短路都可以求出,所以比较适用于求取多个节点对之间的最短路问题,即全源最短路问题。

Dijkstra算法(贪心):

Dijkstra算法则完全不同,该算法只能求得特定节点到其他所有节点之间的最短路。即单源最短路问题。

单源最短路问题:

给定带权有向图G =(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其它各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。

Dijkstra算法是一个典型的贪心问题,其基本思想是:设置顶点集合K并不断地作贪心选择来扩充这个集合。
一个顶点属于集合K当且仅当从源到该顶点的最短路径长度已知。

贪心算法的条件:

  • 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

  • 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

算法原理:

时间复杂度:

Dijkstra 算法的时间复杂度取决于其优先队列(最小堆)的实现方式。以下是常见实现及其时间复杂度:

  1. 使用未排序的数组/列表实现优先队列:

    • 查找最小距离节点 (extract-min): O(V) - 需要扫描整个列表。

    • 更新邻居距离 (decrease-key): O(1) - 直接修改距离值。

    • 总时间复杂度: O(V² + E)

      • V 次 extract-min 操作: O(V) * O(V) = O(V²)

      • E 次 decrease-key 操作: O(E) * O(1) = O(E)

    • 适用场景: 稠密图(边数 E 接近 ),此时 O(V²) 是主要项。

  2. 使用二叉堆(Binary Heap)实现优先队列:

    • 查找最小距离节点 (extract-min): O(log V)

    • 更新邻居距离 (decrease-key): O(log V) - 找到元素位置并上浮(需要额外数据结构如反向索引支持快速查找元素位置)。

    • 总时间复杂度: O((V + E) log V)

      • V 次 extract-min 操作: O(V) * O(log V) = O(V log V)

      • E 次 decrease-key 操作: O(E) * O(log V) = O(E log V)

    • 适用场景: 稀疏图(边数 E 远小于 ),这是最常见且实用的实现方式。有时也简写为 O(E log V)(当 E >= V 时,O(V log V) 被吸收)。

  3. 使用斐波那契堆(Fibonacci Heap)实现优先队列:

    • 查找最小距离节点 (extract-min): 摊还代价 O(log V)

    • 更新邻居距离 (decrease-key): 摊还代价 O(1)

    • 总时间复杂度: O(V log V + E)

      • V 次 extract-min 操作: O(V) * O(log V) = O(V log V)

      • E 次 decrease-key 操作: O(E) * O(1) = O(E)

    • 适用场景: 理论上最优,尤其当图非常稀疏(E << V²)且 V 很大时优势明显。但常数因子较大,实现复杂,实践中较少使用。

算法代码(基础版本):

#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
int Dis[101];
bool mark[101];
struct E
{
    int next;
    int c;
};
vector<E> edge[101];
int main()
{
    int n,m,a,b,c;
    while(cin>>n>>m,n&&m)
    {
        for(int i=1;i<=n;i++)
        {
            edge[i].clear();
            Dis[i]=-1;
            mark[i]=false;
        }
        while(m--)
        {
            cin>>a>>b>>c;
            E tmp;
            tmp.next=b;
            tmp.c=c;
            edge[a].push_back(tmp);
            tmp.next=a;
            tmp.c=c;
            edge[b].push_back(tmp);
        }
        Dis[1]=0;
        mark[1]=true;
        int newp=1;
        for(int i=1;i<n;i++)
        {
            for(int j=0;j<edge[newp].size();j++)
            {
                int t=edge[newp][j].next;
                int c=edge[newp][j].c;
                if(mark[t]==true) continue;
                if(Dis[t]==-1||Dis[t]>Dis[newp]+c)
                    Dis[t]=Dis[newp]+c;
            }
            int min=333333333;
            for(int i=1;i<=n;i++)
            {
                if(Dis[i]==-1) continue;
                if(mark[i]==true) continue;
                if(Dis[i]<min)
                {
                    min=Dis[i];
                    newp=i;
                }
            }
            mark[newp]=true;
        }
        cout<<Dis[n]<<endl;
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值