
nlp
文章平均质量分 72
SimpleLearing
Keep on learning as long as you live!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【深度学习】Layer Normalization原理及其代码实现
Layer Normalization 是一种用于归一化神经网络内部激活的技术,旨在提高训练稳定性和速度。与 Batch Normalization 不同,Layer Normalization 对每个样本的特征维度进行归一化,而不是对整个 mini-batch 进行归一化。它特别适用于处理序列数据,如自然语言处理中的模型。原创 2024-08-05 20:31:52 · 1230 阅读 · 0 评论 -
N-gram 相似度计算与评估
\text{Precision}_{\text{Unigram}} = \frac{\text{重叠的Unigram数量}}{\text{生成文本中的总Unigram数量}} = \frac{5}{6} \approx 0.83 ]\text{Recall}_{\text{Unigram}} = \frac{\text{重叠的Unigram数量}}{\text{参考文本中的总Unigram数量}} = \frac{5}{6} \approx 0.83。原创 2024-08-02 16:59:09 · 1702 阅读 · 0 评论 -
多头注意力模块 (Multi-Head Attention, MHA) 代码实现(pytorch)
定义一个继承自nn.Module的类。定义四个线性层,分别用于查询(Q)、键(K)、值(V)的变换和最终输出的投影。同时定义一个dropout层。原创 2024-07-01 01:01:53 · 1860 阅读 · 0 评论 -
【深度学习】 卷积(Convolution2D)、最大池化(Max Pooling)和 Dropout 的NumPy实现
水平有限,有问题随时交流~原创 2024-06-05 21:48:40 · 479 阅读 · 0 评论 -
【机器学习】之 K-最近邻(KNN)算法原理及实现
K-最近邻(KNN)是一种经典的机器学习算法,适用于分类和回归任务。尽管其简单性和直观性使其在许多应用中表现良好,但在处理大规模数据集和高维数据时,KNN的计算复杂度和存储需求成为其主要限制因素。通过合理选择K值和使用适当的距离度量,KNN可以在许多实际问题中取得令人满意的效果。原创 2024-05-30 21:36:59 · 1933 阅读 · 0 评论 -
【机器学习】之 kmean算法原理及实现
K-Means 是一种简单有效的聚类算法,适用于许多实际问题。然而,它也有一些局限性,因此在选择聚类算法时应考虑数据集的特性和具体需求。原创 2024-05-30 21:45:55 · 472 阅读 · 0 评论 -
基于BERT模型的文本分类示例
定义一个继承自Dataset的类,用于封装文本数据和标签。# ...(省略类定义的代码以节省空间)使用AdamW作为优化器,并定义交叉熵损失函数。num_training_steps = len(dataloader) * 3 # 假设我们训练3个epoch。原创 2024-05-21 21:19:06 · 506 阅读 · 0 评论 -
BERT模型中句子Tokenize和ID转换的过程
当我们使用BERT或其他类似的预训练语言模型时,将句子转换为token的过程通常涉及以下几个步骤:初始化Tokenizer:首先,我们需要导入相应的Tokenizer类,并根据需求选择合适的预训练模型进行初始化。分词(Tokenization):分词是将句子分割成单词或者子词(subword)的过程。这个过程通常包括将句子转换为小写(如果使用的模型支持小写输入)、识别并标记单词边界、将单词分割为子词(如果使用的是基于WordPiece或Byte-Pair Encoding的模型),等等。原创 2024-03-26 19:10:40 · 1173 阅读 · 0 评论