划分数据集的方法

本文介绍了在机器学习中用于划分数据集的两种方法:train_split和ShuffleSplit。train_split主要参数包括test_size、train_size等,其中random_state控制重复性,stratify支持分层采样。ShuffleSplit提供了n_splits次数的随机划分,同样可设置test_size和random_state,适用于交叉验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. train_split方法:
    1) 导入包:
    from sklearn.model_selection import
    train_test_split
    2)函数介绍:
    train_split(*arrays, test_size, train_size, random_state, shuffle, stratify)
    3)参数介绍:
    a. *arrays
    b. test_size: 测试集占总数据集的比例,默认为0.25
    c. train_size: 训练集占总数据集的比例,默认为None,表示总体数据集除去测试集的部分
    d. random_state: (其他参数都相同时)只有设为1时,每次运行时划分的测试集与训练集都一样;设为0或不设置,每次划分的都不一样。
    e. shuffle:boolean类型,默认为True,表示在切割数据集之前是否要打乱数据。当shuffle=False时,stratify必须为None。
    f. stratify: 默认为None,当值不是None时,代表数据集会以一种分层的方式被切割。

  2. ShuffleSplit方法:
    1)导入包:
    from sklearn.model_selection import ShuffleSplit
    2)函数介绍: ShuffleSplit(n_spli

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值