【机器学习】机器学习的数学基础

hello大家好!这次不更数据结构了,把之前的机器学习的部分接着往下说,正好论文写完了,也算是把之前的学过的内容再整理、复习一遍。我整理的内容基本来源于一位麻省理工大学的教授,也有参考了一位悉尼大学的副教授。内容其实算是偏向基础,作为介绍了解的内容,如果要深入研究某个领域,大家还是自己去多查查资料吧,git上面就有不少项目供大家参考,资源非常丰富!
 

按照教授授课的逻辑我接着往下写了这一篇博客,内容是关于机器学习的数学基础介绍。其实你会发现,在理工方面越深入学习研究,好像越会发现一件事——万物都与数学相关,与函数相关。

1、Math for Machine Learning

机器学习是一种研究算法和统计模型的方法,计算机通过模式和推理来执行特定任务 。它从样本数据中构建数学模型,该样本数据可能属于监督学习或无监督学习。它与计算统计学密切相关,计算统计学是统计学和计算机科学之间的接口。此外,线性代数和概率论是构成机器学习基础的两种数学工具。

一般来说,统计学是一门涉及收集、分析和解释数据的科学。数据是可以分为定量或定性的事实和数字。从给定的数据集中,我们可以预测预期的观察值、两次观察结果之间的差异以及数据的样子,这有助于更好地做出决策 。

描述性统计和推断性统计是数据分析的两种方法。描述性统计将原始数据汇总为信息,通过该信息可以获取数据的共同预期和变化。它还提供了图形方法,可用于可视化数据样本和对观察的定性理解,而推论统计是指从数据中得出结论。推论是在概率论的框架下进行的。因此,理解数据和解释结果是机器学习的两个重要方面。

#在图中也可以直观的看出他们的关系,柱子上分别是回归分析、降维、密度估计、分类,底下的地基分别是向量微积分、概率与分布、优化方法,再往下就是线性代数、接解析几何还有矩阵分解。由这些一个个数学模块,堆砌了ML的大房子。

下面的篇幅主要为大家介绍几个重点且基础的部分:线性代数、矢量微积分以及概率与分布。

2、线性代数

在机器学习中,线性代数是必不可少的基础工具之一,它为数据表示、模型设计、计算和优化提供了理论支持。线性关系也是最简单的形式,被 ML 算法广泛采用,例如线性回归、线性分类器、单个神经元由线性变换和非线性变换组成等等等等。

让我们展开来说说~

(1)向量

        向量是一种可以与另一个向量相加,或与标量相乘,并且结果仍然是向量的对象。也是线性代数的基础元素。具体例子如下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值