1. 引言
1.1 研究背景与意义
随着互联网数据的爆炸式增长,个性化推荐系统成为提升用户体验的关键技术。准确捕捉用户兴趣需要大量多维度数据,但获取高质量标注数据面临隐私保护、数据分散等挑战。网络爬虫技术为自动采集用户行为数据提供了解决方案,而如何有效评估模型在个体差异场景下的泛化能力仍是研究热点。
传统 k 折交叉验证方法假设数据独立同分布 (i.i.d.),忽略了用户个体差异对模型性能的影响。LOSO 交叉验证通过将不同用户数据完全分离到训练集和测试集,能更真实地模拟模型在实际应用中的表现。本研究结合 Python 爬虫技术与 LOSO 方法,构建完整的用户兴趣预测系统,为个性化推荐研究提供新思路。
1.2 研究目标与贡献
本文的主要研究目标:
- 设计并实现基于 Scrapy 框架的学术平台爬虫系统
- 构建包含文本特征提取、向量化的完整数据预处理流程