1. 引言
1.1 研究背景与意义
随着互联网技术的快速发展,网络上的信息量呈爆炸式增长。据 Statista 统计,截至 2023 年,全球互联网用户已达 51.6 亿,每天产生的数据量超过 2.5 万亿字节。如何从海量的非结构化数据中提取有价值的信息,成为当前数据科学领域的重要研究方向。网络爬虫作为一种自动化数据采集工具,可以高效地获取网页内容,为数据分析提供丰富的数据来源。
Pytils 是一个功能强大的 Python 库,提供了多种实用工具,其中 slugify 功能可以将任意文本转换为适合 URL 的形式。将 Python 爬虫技术与 Pytils 相结合,可以构建一个高效、规范的数据分析系统,为各领域的研究和决策提供支持。
1.2 研究目标与方法
本文的研究目标是设计并实现一个集数据采集、处理、分析和可视化于一体的完整系统,主要包括以下几个方面:
- 设计高效的爬