无题(1871)

无题

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1766 Accepted Submission(s): 789


Problem Description
就要复试了,外地的考生都要在学校附近住宾馆了。假设在学校附近有C家宾馆,并且这些宾馆只有单人房,而每家宾馆的价格不一样,学生们都想找价格便宜的住,所以现在需要你的帮助,当有学生需要住宾馆的时候,告诉他哪个宾馆还有空的房间并且价格最便宜。而且有一个要求,同一个组的学生要住在同一个宾馆。

Input
输入包括多组数据。输入首先包括一个整数T(T <= 50),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表宾馆的个数,接下来是C行数据,每行3个整数,第一个代表宾馆的编号(<=1000),第二个是宾馆的房间数(<=50),第三个是宾馆的价格(<=1000)。
然后是一个整数T (T <= 1000),代表想找宾馆住的小组,接下来的T行每行代表一个要找宾馆的小组,每个小组不超过10人。

Output
对于每组数据中的想找宾馆的小组,输出他们应该找的宾馆编号。如果没有合适的宾馆或已经住满,输出”sorry”.

Sample Input
1 2 1 2 100 2 3 120 4 3 1 1 5

Sample Output
2 1 1 sorry
AC代码
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stdlib.h>
using namespace std;
struct Node{
  int index;
  int rooms;
  int cost;
  friend bool operator<(const Node &a,const Node &b){
        if(a.cost!=b.cost)
            return a.cost<b.cost;
        else
            return a.rooms<b.rooms;
  }
}node[105];
int main(){
  int t,i,j,n,q,man;
  scanf("%d",&t);
  while(t--){
        scanf("%d",&n);
        for(i=0;i<n;i++)
              scanf("%d%d%d",&node[i].index,&node[i].rooms,&node[i].cost);
        scanf("%d",&q);
        while(q--){
              scanf("%d",&man);
              sort(node,node+n);
              int flag=1;
              for(i=0;i<n;i++){
                    if(node[i].rooms>=man){
                            node[i].rooms-=man;
                            printf("%d\n",node[i].index);
                            flag=0;
                            break;
                    }
              }
              if(flag)
                printf("sorry\n");
        }
  }
  return 0;
}
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、计算机视觉和模式识别等领域。物体识别是OpenCV的一个重要应用场景,以下是一些常见的物体识别方法和技术: 1. **特征提取与匹配**: - **SIFT(尺度不变特征变换)**和**SURF(加速稳健特征)**:这些算法用于检测和描述局部特征,能够在图像中识别出相同的物体,即使它们的大小、旋转或光照条件发生变化。 - **ORB(定向快速旋转BRIEF)**:一种快速的特征检测和描述算法,适用于实时应用。 2. **模板匹配**: - 通过在图像中滑动一个模板(已知物体的图像),并计算模板与图像区域的相似度,来找到物体的位置。 3. **机器学习与深度学习**: - **支持向量机(SVM)**:用于分类和回归分析,可以用于物体识别任务。 - **卷积神经网络(CNN)**:深度学习模型,特别适合处理图像数据,能够自动学习图像的特征并进行分类。 4. **目标检测算法**: - **Haar级联分类器**:基于积分图和AdaBoost算法,用于实时人脸检测。 - **YOLO(You Only Look Once)**和**SSD(Single Shot MultiBox Detector)**:实时目标检测算法,能够在单次前向传播中同时进行目标定位和分类。 5. **实例分割**: - **Mask R-CNN**:在目标检测的基础上,进一步分割出目标的精确轮廓。 OpenCV提供了丰富的API和工具,可以方便地实现上述方法。以下是一个简单的示例代码,展示如何使用OpenCV进行模板匹配: ```python import cv2 import numpy as np # 读取原始图像和模板图像 original_image = cv2.imread('original_image.jpg') template = cv2.imread('template.jpg') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) w, h = template_gray.shape[::-1] # 转换为灰度图 gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # 模板匹配 result = cv2.matchTemplate(gray_original, template_gray, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(result >= threshold) # 绘制矩形框 for pt in zip(*loc[::-1]): cv2.rectangle(original_image, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) # 显示结果 cv2.imshow('Detected', original_image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值