脉冲神经网络的历史
AlanLloydHodgkin和AndrewHuxley在1952年提出了第一个脉冲神经网络模型,这个模型描述了动作电位是怎样产生并传播的。
但是,脉冲并不是在神经元之间直接传播的,它需要在突触间隙间交换一种叫“神经递质”的化学物质。这种生物体的复杂性和可变性导致了许多不同的神经元模型。
从信息论的观点来看,找到一种可以解释脉冲,也就是动作电位的模型是个问题。所以,神经科学的一个基本问题就是确定神经元是否通过时间编码来交流。时间编码表明单一的神经元可以取代上百个S型隐藏层节点。
谷歌人工智能写作项目:爱发猫
脉冲神经网络的简介
脉冲神经网络(SNN-SpikingNeuronNetworks)经常被誉为第三代人工神经网络写作猫。第一代神经网络是感知器,它是一个简单的神经元模型并且只能处理二进制数据。
第二代神经网络包括比较广泛,包括应用较多的BP神经网络。但是从本质来讲,这些神经网络都是基于神经脉冲的频率进行编码(ratecoded)。
脉冲神经网络,其模拟神经元更加接近实际,除此之外,把时间信息的影响也考虑其中。
思路是这样的,动态神经网络中的神经元不是在每一次迭代传播中都被激活(而在典型的多层感知机网络中却是),而是在它的膜电位达到某一个特定值才被激活。
当一个神经元被激活,它会产生一个信号传递给其他神经元,提高或降低其膜电