【CDA干货】银行理财用户数据分析怎么做?实操案例来了!

数据分析在银行业的应用不可或缺,将海量的数据转化为直观的行动指南,能带来更高效、更智能的决策支持,推动银行业持续创新发展。

数据分析如何成为金融决策的核心力量?接下来对银行理财用户进行实际案例分析,为您提供一些参考!

一、 数据分析在银行的应用

银行业数据分应用是多方面的,涵盖风险控制到客户服务的多个业务流程。

比如风险管理方面,可以评估信贷风险,通过历史违约数据预测未来风险,还可以评估利率汇率变动对投资的影响,通过交易数据分析检测欺诈行为等。在营销策略方面,可以识别目标市场和客户细分,制定个性化营销,预测分析客户需求,提前布局营销活动等,通过数据分析反馈优化策略。

图片

数据分析已经成为银行业不可或缺的工具,它帮助深入洞察业务运营,实现数据驱动的决策,增强竞争力,最终推动业务增长和创新。

这里介绍两个常用的数据分析模型,

RFM模型:

RFM用于对用户进行分类,并判断每类细分用户的价值。三个关键指标为最近一次消费时间(R),即客户距离最近的一次采购时间的间隔。最近一段时间内消费频次(F),指客户在限定的期间内所购买的次数。最近一段时间内消费金额(M),即客户的消费能力,通常以客户单次的平均消费金额作为衡量指标。通过上述三个关键指标判断客户价值并对客户进行观察和分类,针对不同的特征的客户进行相应的营销策略。

图片

AARRR用户运营分析:

是用户运营过程中常用的一种模型,解释了实现用户增长的5个指标,包括获客、激活、留存、收益、传播。从获客到传播推荐,整个AARRR模型形成了用户全生命周期的闭环模式,不断扩大用户规模,实现持续增长。每一个产品具体情况不同,但总体上都包括这5个方面的发展过程,可以对这5个发展过程逐个分析。

图片

二、银行用户数据分析案例

进行数据分析之前,需要对业务背景有所了解,明确数据分析目的。

由于市场竞争日益激烈,XX银行理财产品的购买金额和购买人数均出现了下滑,为了应对这一挑战,需要通过数据分析深入了解产品用户,转变营销策略。

首先从用户属性入手,通过数据库的标签清洗,找到高价值潜在客户的属性标签,实现更精准的营销。比如可以筛选历史资产量级大于50万,平均客单价在5万以上的客户,以RFM中的重要客户为基准,这类RFM可以根据企业的具体指标来制定,基础可以筛选8类客户,当然会有更细分的标签。

图片

其次分析用户购买偏好,了解风险类型与实际购买产品间的差异。举个例子,如分析客户对于固收稳健类产品的购买偏好,可以从数据库中先提取近一年固收稳健类产品的申购、规模数据,并通过BI进行客户数据穿透,比如平均持有市场、复购次数(持仓客户一年内再次购买产品的次数)等,一般银行企业都会有数据可视化的工具,可以以此为依据进行数据分析。

图片

最后从收益角度出发,分析用户的收益来源,以优化产品组合提升服务质量,从而增强客户粘性和复购率。比如AARRR模型的实例一般为转化率漏斗,从获客数、激活数、留存数、收益数据等,进行每一层的转化率测算,分析具体哪一个步骤的转化率较低,针对性进行优化。

图片

数据准备可以构建关键指标,依托XX银行内部的数据资源,包括用户理财的各种信息。

具体以脱敏的XX银行某产品购买数据表为例,从表中可以看到用户的姓名、身份证号、年龄、性别、学历、家庭年收入等基本信息,这些都是用户的基础属性。此外,还有风险偏好、理财购买目的、选择的理财产品、选择本行的原因等购买偏好信息,以及购买金额、购买期限、收益等关键指标都在其中。

图片

总体情况可以梳理银行理财用户包括总购买金额、总购买人数和总体收益率等指标,获取一个整体的概览,可以看出某产品购买的群体为学历较高、客单价较多的“上班族群体”。

综合用户的交易数据,计算总购买金额、总购买人数和总体收益率等关键指标,评估理财产品对于这类客群的接受度。在分析过程中,也可以选择合适的图表工具来呈现分析结果,以便更直观地理解数据背后的信息和趋势,比如数据透视表,趋势图,坐标系等,可以使用EXCEL等基础工具来实现。

图片

该数据分析可以得出该银行某产品持仓客群用户收益分析的相关性结论,对于购买目的为合理安排资金、分担风险、长期资产保值的用户,收益普遍较高,偏好中风险、中收益理财产品的用户,也获得了较多的收益。而投资风格激进,短期频繁申赎的客群,收益预期较低。

面对获得收益高的客群,可以重点采取客户经理主动营销等方式,推荐贴近其需求的产品,面对获得中等收益的客群,可以开展营销活动、资产诊断等服务,引导其加仓长持,面对获得低收益甚至亏损的客群,可以给予权益支持、投资者教育,倡导长期投资资产配置的价值理念。

图片

基于这些发现,可以考虑优化该银行的理财产品组合,增加更多符合这些用户偏好的产品类别。此外,还可以提升服务质量,增加客户粘性,提高产品复购率。

在银行业,数据分析极其重要,这个行业数据量庞大、发展快。CDA数据分析师在银行业的数据岗中认可度非常高,一般都要求考过CDA数据分析师二级,CDA二级中包含了模型搭建的详细内容,对于数据岗的工作来说特别有帮助,一些金融企业可以给报销考试费。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值