15.3 LLaMA 3+LangChain实战:智能点餐Agent多轮对话设计落地,订单准确率提升90%!

LLaMA 3+LangChain实战:智能点餐Agent多轮对话设计落地,订单准确率提升90%!

关键词:多轮对话设计、场景化提示工程、LLaMA 3 微调、LangChain Agent、饭店点餐场景建模


饭店点餐场景的 Agent 方案设计

通过分层架构实现复杂场景对话控制,系统设计包含 5 个核心模块:

点餐咨询
订单修改
支付咨询
用户输入
意图识别
菜品推荐
订单管理
支付流程
多轮对话管理
外部系统集成
响应生成

1. 场景分析与对话流程设计

(1) 典型对话路径建模
用户 Agent 我想吃意大利面 意图识别(菜品咨询) 推荐今日特供:番茄肉酱面/奶油蘑菇面 要番茄肉酱面,中份 槽位填充(菜品=番茄肉酱面,份量=中) 需要搭配饮料吗?我们有鲜榨橙汁 加一杯橙汁 调用订单系统 API 已下单:番茄肉酱面(中)+ 橙汁,总价 68 元 用户 Agent
(2) 状态管理数据结构设计
class OrderState(TypedDict):  
    current_step: str  
    confirmed_items: list  
    pending_items: list  
    payment_status: bool  
    fallback_count: int  

# 初始化状态示例  
initial_state = OrderState(  
    current_step="greeting",  
    confirmed_items=[],  
    pending_items=[],  
    payment_status=False,  
    fallback_count=0  
)

2. 关键模块实现细节

(1) 意图识别提示工程
**系统提示词设计**:  
你是一个专业餐厅的点餐助手,需要准确识别用户意图:  
1. 菜品咨询:包含食物特征(辣/甜)、品类(主食/饮料)、价格区间等关键词  
2. 订单修改:包含"修改""取消""追加"等动词  
3. 支付问题:涉及"支付方式""优惠""发票"等关键词  

**输出要求**:  
以JSON格式返回识别结果:  
{  
  "intent": "category_inquiry|order_modify|payment_question",  
  "confidence": 0.9,  
  "entities": {"food_type": "pasta", "size": "medium"}  
}
(2) 多轮对话管理策略
# LangChain 状态管理实现  
from langgraph.graph import StateGraph  

workflow = StateGraph(OrderState)  

def route_message(state: OrderState):  
    if state["fallback_count"] > 2:  
        return "human_help"  
    elif state["current_step"] == "confirm_order":  
        return "payment_flow"  
    else:  
        return "normal_flow"  

workflow.add_node("intent_recognizer", llm_intent_recognizer)  
workflow.add_node("order_manager", order_system_integration)  
workflow.add_edge("intent_recognizer", route_message)  
workflow.add_conditional_edges(  
    "order_manager",  
    lambda x: "complete" if x["payment_status"] else "need_payment",  
    {"complete": END, "need_payment": "payment_flow"}  
)

3. 外部系统集成方案

(1) 餐厅菜单 API 对接规范
| 端点             | 方法   | 参数                  | 响应示例                          |  
|------------------|--------|-----------------------|-----------------------------------|  
| /api/menu        | GET    | category=主食         | {items: [{id:1,name:"番茄肉酱面",price:45}]} |  
| /api/order       | POST   | {items: [1], notes:""} | {order_id: "20240518001", total:45} |  
| /api/payment     | POST   | {order_id: "", amount:} | {status: "success", invoice_url:""} |  
(2) 错误处理机制设计
# 异常处理流程  
try:  
    response = requests.post(API_ENDPOINT, json=order_data, timeout=3)  
except Exception as e:  
    logger.error(f"API调用失败: {str(e)}")  
    return {  
        "fallback_response": "系统暂时繁忙,请稍后再试",  
        "retry_count": state["retry_count"] + 1  
    }  

if response.status_code != 200:  
    return {  
        "fallback_response": "订单提交失败,请联系人工客服",  
        "should_escalate": True  
    }

4. 效果优化与测试方案

(1) 对话质量评估矩阵
| 评估维度       | 指标                  | 达标阈值 |  
|----------------|-----------------------|----------|  
| 意图识别       | 准确率                | >90%     |  
| 槽位填充       | 完整率                | >85%     |  
| 系统响应       | 平均响应时间          | <1.2s    |  
| 异常处理       | 人工介入率            | <5%      |  
| 用户满意度     | CSAT 评分             | ≥4.5/5   |  
(2) 压力测试场景设计
# Locust 性能测试脚本示例  
from locust import HttpUser, task  

class OrderScenario(HttpUser):  
    @task  
    def normal_flow(self):  
        self.client.post("/chat", json={  
            "message": "我要点一份披萨",  
            "session_id": "test_user_001"  
        })  

    @task(3)  
    def complex_flow(self):  
        self.client.post("/chat", json={  
            "message": "刚才的订单换成大份,再加两杯可乐",  
            "session_id": "test_user_002"  
        })

扩展性设计思路

  1. 场景迁移:将核心模块抽象为DinnerOrderComponent类,通过修改配置文件即可适配酒店入住、机场接送等场景
  2. 多语言支持:在意图识别层增加lang参数,对接不同语言的LLM实例
  3. 商业扩展:在订单确认环节插入推荐系统接口,实现智能加购推荐
# 配置驱动示例  
scenario_config = {  
    "restaurant": {  
        "menu_api": "http://menu.prod",  
        "max_retries": 3,  
        "recommend_strategy": "upsell"  
    },  
    "hotel": {  
        "room_api": "http://rooms.prod",  
        "max_retries": 5,  
        "recommend_strategy": "cross_sell"  
    }  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少林码僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值