少林码僧
资深技术专家,拥有 10 年大厂后端开发经验,长期深耕于企业级技术架构与应用开发领域。在过往的职业生涯中,专注于亿级用户规模的 Agent 平台业务支撑,从架构设计、性能优化到高并发处理,积累了丰富且宝贵的实战经验。
曾主导多个大型项目的后端开发工作,成功解决了一系列高难度技术难题,保障了 Agent 平台在海量用户请求下的稳定高效运行。对企业级 Agents 开发原理有着深刻理解,能够将复杂的技术知识深入浅出地讲解给学员。凭借其卓越的技术能力和项目管理经验,多次获得公司内部的技术创新奖项。
展开
-
二叉树的层次遍历
给你一个二叉树,请你返回其按 层次遍历 得到的节点值(即逐层地,从做到右访问所有节点)通过两个数组来交替打印。原创 2024-11-27 00:00:00 · 138 阅读 · 0 评论 -
如何用1分钟遍历一个100TB的文件?
想象一下,你面前有一个100TB的文件,需要在短短1分钟内完成遍历——这听起来像是科幻小说中的情节,但本文将带你揭开如何在现实中实现这一壮举的秘密。通过结合分布式文件系统、RAID技术和并行计算框架,我们可以在1分钟内遍历一个100TB的文件。在Linux中,这通过inode实现,它记录文件的元数据和数据块索引表。HDFS将文件分割成数据块,并在多个DataNode上存储这些块的副本,以实现高可用性和并行访问。为了实现1分钟内遍历100TB文件的目标,我们需要转向分布式文件系统,如Hadoop的HDFS。原创 2024-11-20 00:00:00 · 1809 阅读 · 0 评论 -
Kubernetes 默认调度器:优先级与抢占机制解析
用户可以在 Pod 层面定义优先级。这通过在 Pod 的配置文件中指定优先级相关的字段来实现。优先级的值是一个整数,数值越高,优先级越高。例如:kind: Podmetadata:spec:这里通过关联到一个预定义的优先级类别,其背后对应一个具体的优先级数值。Kubernetes 默认调度器的优先级与抢占机制为集群资源管理带来了高度的灵活性和可控性。原创 2024-11-05 09:16:48 · 80 阅读 · 0 评论 -
如何抓住重点,系统高效地学习数据结构和算法?
总之,要抓住重点、系统高效地学习数据结构和算法,需要明确学习目标、选择合适的学习资源、掌握学习方法,并持续学习和优化。只有这样,才能真正掌握数据结构和算法的知识和技能,提高自己的编程能力和解决问题的能力。关注最新的技术动态和发展趋势。不断优化自己的代码和算法。确定学习的深度和广度。理论学习与实践相结合。多做练习题和案例分析。原创 2024-11-05 00:00:00 · 288 阅读 · 0 评论 -
算法的时间复杂度和空间复杂度的权衡原则是什么?
总之,在时间复杂度和空间复杂度之间进行权衡时,需要根据具体的问题需求、数据规模、系统资源和算法的复杂性等因素进行综合考虑。没有一种通用的权衡原则,需要根据实际情况进行分析和选择,以找到最适合的算法。在实际的算法设计和分析中,常常需要在时间复杂度和空间复杂度之间进行权衡。平衡时间和空间复杂度的优化方法。原创 2024-10-30 00:00:00 · 653 阅读 · 0 评论 -
队列:如何实现线程池等有限资源池的请求排队功能?
在计算机编程中,我们经常会遇到需要管理有限资源的情况。比如线程池,它是一种有限的线程资源集合,用于处理大量的任务。当任务数量超过线程池中的线程数量时,就需要一种机制来排队等待处理这些任务。这时,队列这种数据结构就发挥了重要作用。原创 2024-10-30 00:00:00 · 364 阅读 · 0 评论 -
如何分析算法的执行效率和资源消耗
总之,分析算法的执行效率和资源消耗需要从时间复杂度和空间复杂度分析入手,通过实际测试和分析来了解算法在不同输入规模下的性能表现,并对算法进行优化和改进,以提高算法的执行效率和资源利用率。原创 2024-10-31 00:00:00 · 235 阅读 · 0 评论 -
算法复杂度分析:深入剖析最好、最坏、平均、均摊时间复杂度
在算法复杂度分析中,最好情况时间复杂度(best case time complexity)、最坏情况时间复杂度(worst case time complexity)、平均情况时间复杂度(average case time complexity)和均摊时间复杂度(amortized time complexity)是四个重要的概念,它们从不同角度描述了算法的性能。原创 2024-10-31 00:00:00 · 417 阅读 · 0 评论 -
数组:为什么很多编程语言中数组都从0开始编号?
虽然数组从 0 开始编号在一些情况下可能会让初学者感到困惑,但从历史、数学和编程习惯等多个角度来看,这种设计有其合理性和优势。随着编程经验的积累,开发者通常会逐渐适应并理解这种编号方式的好处。硬件和内存寻址的考虑。原创 2024-11-01 00:00:00 · 232 阅读 · 0 评论 -
如何轻松写出正确的链表代码?
在编程中,链表是一种常见的数据结构,它在很多场景下都有着重要的应用。然而,对于初学者来说,写出正确的链表代码可能并不是一件容易的事情。本文将为你介绍一些方法,帮助你轻松写出正确的链表代码。原创 2024-11-01 00:00:00 · 103 阅读 · 0 评论 -
如何实现LRU缓存淘汰算法?
在计算机科学中,LRU(Least Recently Used)缓存淘汰算法是一种常用的策略,用于管理有限的缓存空间。当缓存已满时,LRU 算法会淘汰最近最少使用的数据,以腾出空间来存储新的数据。本文将详细介绍如何实现 LRU 缓存淘汰算法。LRU 算法的核心思想是:当需要淘汰数据时,选择最近最少使用的数据进行淘汰。这意味着,最近被访问的数据在缓存中的生存时间最长,而长时间未被访问的数据则更容易被淘汰。例如,假设有一个缓存空间可以存储三个数据项。一开始,缓存为空。当依次访问数据项 A、B、C 时,缓存中存储原创 2024-11-02 00:00:00 · 101 阅读 · 0 评论 -
栈:如何实现浏览器的前进和后退功能?
在我们日常使用浏览器的过程中,前进和后退功能是非常常见且重要的。你是否想过浏览器是如何实现这一便捷功能的呢?其实,栈这种数据结构在其中发挥了关键作用。原创 2024-11-02 00:00:00 · 143 阅读 · 0 评论 -
递归:如何用三行代码找到“最终推荐人”?
在编程中,递归是一种强大的技术,它可以让我们用简洁的代码解决复杂的问题。今天,我们就来看看如何用递归在短短三行代码内找到“最终推荐人”。原创 2024-10-29 08:03:22 · 267 阅读 · 0 评论 -
排序:为什么插入排序比冒泡排序更受欢迎?
在编程中,排序算法是非常重要的一部分。插入排序和冒泡排序都是比较简单的排序算法,但在实际应用中,插入排序往往比冒泡排序更受欢迎。这是为什么呢?让我们一起来深入探讨一下。原创 2024-10-29 08:03:02 · 68 阅读 · 0 评论 -
排序:如何用快排思想在 O(n) 内查找第 K 大元素?
快速排序是一种分治算法,它的基本思想是通过选择一个基准元素,将序列分为两部分,一部分小于基准元素,另一部分大于基准元素。然后分别对这两部分进行递归排序,最终使整个序列有序。例如,对于序列,选择第一个元素5作为基准元素。经过一轮划分后,序列变为,此时5已经在正确的位置上,左边的元素都小于它,右边的元素都大于它。然后再对左右两部分分别进行递归排序。原创 2024-11-03 00:00:00 · 106 阅读 · 0 评论 -
线性排序:如何根据年龄给 100 万用户数据排序?
线性排序算法是一类时间复杂度为线性的排序算法,与传统的比较类排序算法(如冒泡排序、插入排序、快速排序等)不同,线性排序算法通常不需要进行大量的比较操作,而是利用数据的特定性质进行排序。常见的线性排序算法有计数排序、桶排序和基数排序。原创 2024-11-03 00:00:00 · 113 阅读 · 0 评论 -
二分查找:如何快速定位 IP 对应的省份地址?
在网络管理、数据分析等领域,经常需要根据 IP 地址确定其对应的地理位置信息,比如省份地址。二分查找算法可以为我们提供一种高效的解决方案来快速定位 IP 对应的省份地址。原创 2024-11-04 00:00:00 · 969 阅读 · 0 评论 -
跳表:为什么 Redis 一定要用跳表实现有序集合?
在 Redis 中,有序集合(sorted set)是一种非常重要的数据结构,它被广泛应用于各种场景,如排行榜、延时任务队列等。而 Redis 选择使用跳表(skiplist)来实现有序集合,这背后有着深刻的原因。原创 2024-11-04 00:00:00 · 532 阅读 · 0 评论 -
如何选择适合的有序集合数据结构?
在选择适合的有序集合数据结构时,需要考虑多个因素,包括数据规模、操作需求、性能要求以及编程语言的支持等。原创 2024-10-27 19:25:56 · 58 阅读 · 0 评论 -
平衡二叉搜索树的时间复杂度为什么是 O(log n)?
平衡二叉搜索树的时间复杂度为 O(log n),主要原因在于其特殊的结构和操作特性。原创 2024-10-28 00:00:00 · 309 阅读 · 0 评论 -
散列表:Word 文档的单词拼写检查功能是如何实现的?
在日常使用 Word 文档时,我们常常依赖其强大的单词拼写检查功能来确保文档的准确性。那么,这个看似神奇的功能背后是如何实现的呢?散列表在其中发挥了关键作用。原创 2024-10-28 00:00:00 · 74 阅读 · 0 评论 -
散列表:为什么经常把散列表和链表放在一起使用?
在计算机科学中,散列表(哈希表)和链表是两种常见的数据结构。你可能会好奇,为什么它们经常被放在一起使用呢?让我们一起来深入探讨这个问题。原创 2024-10-27 00:00:00 · 317 阅读 · 0 评论 -
散列表:如何打造一个工业级水平的散列表?
打造一个工业级水平的散列表需要考虑哈希函数的选择、处理冲突的方法和散列表的扩容等因素。通过合理地选择这些因素,可以实现一个可靠、高效的散列表,满足工业级应用的需求。在实际应用中,还需要根据具体的情况进行调整和优化,以达到最佳的性能和空间利用率。原创 2024-10-27 00:00:00 · 470 阅读 · 0 评论 -
散列表:常见的散列冲突解决方法有哪些?
在使用散列表(哈希表)时,由于不同的键可能会映射到相同的哈希值,就会产生散列冲突。原创 2024-10-26 00:00:00 · 497 阅读 · 0 评论 -
散列表:哈希表的装载因子对散列冲突有什么影响?
装载因子是哈希表中已存储的元素个数与哈希表大小的比值。例如,如果一个哈希表中有 10 个元素,哈希表的大小为 20,那么装载因子就是 10/20 = 0.5。原创 2024-10-26 00:00:00 · 257 阅读 · 0 评论 -
散列表:如何解决哈希表装载因子过高导致的性能下降问题?
总之,当哈希表装载因子过高导致性能下降时,可以通过扩容哈希表、优化哈希函数和选择合适的冲突解决方法来解决问题。在实际应用中,可以根据具体情况选择一种或多种方法结合使用,以提高哈希表的性能。一个好的哈希函数可以使元素更加均匀地分布在哈希表中,减少冲突的发生。即使在装载因子较高的情况下,一个优秀的哈希函数也能在一定程度上保证性能。当装载因子超过一定阈值时,增加哈希表的大小,然后将现有的元素重新哈希到新的哈希表中。当装载因子过高时,可以考虑选择更适合当前情况的冲突解决方法。原创 2024-10-25 00:00:00 · 123 阅读 · 0 评论 -
哈希算法:如何防止数据库中的用户信息被脱库?
哈希算法,也称为散列算法,是一种将任意长度的输入数据转换为固定长度输出数据的算法。这个输出数据通常被称为哈希值或散列值。确定性:对于相同的输入数据,总是产生相同的哈希值。不可逆性:很难从哈希值反向推导出原始输入数据。唯一性:不同的输入数据通常会产生不同的哈希值,但由于哈希值的长度是固定的,可能会存在哈希冲突,即不同的输入数据产生相同的哈希值。不过,好的哈希算法会尽量减少哈希冲突的发生概率。常见的哈希算法有 MD5、SHA-1、SHA-256 等。原创 2024-10-24 00:00:00 · 95 阅读 · 0 评论 -
数据库安全:常见数据库安全攻击手段及防范措施
在当今数字化时代,数据库存储着大量的关键信息,包括用户数据、财务信息、商业机密等。因此,数据库安全至关重要。了解常见的数据库安全攻击手段以及相应的防范措施,可以帮助我们更好地保护数据库免受攻击。原创 2024-10-24 00:00:00 · 338 阅读 · 0 评论 -
哈希算法:哈希算法在分布式系统中有哪些应用?
哈希算法在分布式系统中有着广泛的应用,包括数据存储与检索、负载均衡和数据分片等方面。通过合理地应用哈希算法,可以提高分布式系统的性能、可靠性和可扩展性。在实际应用中,需要根据具体的需求选择合适的哈希算法和应用场景,并结合其他技术手段来优化系统的性能。原创 2024-10-25 00:00:00 · 98 阅读 · 0 评论 -
哈希算法:哈希算法在分布式系统中有哪些应用?
哈希算法在分布式系统中有着广泛的应用,包括数据存储与检索、负载均衡和数据分片等方面。通过合理地应用哈希算法,可以提高分布式系统的性能、可靠性和可扩展性。在实际应用中,需要根据具体的需求选择合适的哈希算法和应用场景,并结合其他技术手段来优化系统的性能。原创 2024-10-22 00:00:00 · 120 阅读 · 0 评论 -
二叉树基础:什么样的二叉树适合用数组来存储?
并不是所有的二叉树都适合用数组来存储。完全二叉树和近似完全二叉树是最适合用数组存储的二叉树类型,因为它们的结构比较规则,可以通过简单的数组索引计算来访问节点的子节点和父节点。而一般的二叉树和节点数量较多且频繁进行插入和删除操作的二叉树不适合用数组存储,因为它们的结构比较复杂,或者在数组中进行插入和删除操作效率较低。在选择二叉树的存储方式时,需要根据二叉树的特点和应用场景来综合考虑,选择最合适的存储方式。原创 2024-10-20 00:00:00 · 202 阅读 · 0 评论 -
二叉树基础:有了高效的散列表,为什么还用二叉树?
虽然散列表是一种非常高效的数据结构,但在某些场景下,二叉树仍然具有不可替代的优势。二叉树的有序性、平衡性、可遍历性以及在范围查询、数据有序性要求高的场景、内存占用和空间局部性、稳定性和可预测性等方面的优势,使得它在很多应用中都发挥着重要的作用。在实际编程中,我们需要根据具体的需求和场景选择合适的数据结构,以达到最佳的性能和效果。原创 2024-10-20 00:00:00 · 171 阅读 · 0 评论 -
递归树:如何借助树来轻松分析递归算法的时间复杂度?
递归树是一种非常有用的工具,可以帮助我们直观地理解递归算法的执行过程,并轻松地分析其时间复杂度。通过确定递归关系、构建递归树、分析树的结构和计算节点总数,我们可以准确地确定递归算法的时间复杂度。在实际应用中,我们可以利用递归树来优化递归算法,提高算法的效率。同时,递归树也可以帮助我们更好地理解递归算法的本质,为进一步的算法设计和分析提供基础。原创 2024-10-19 00:00:00 · 178 阅读 · 0 评论 -
红黑树:掌握这些技巧,你也可以轻松实现一个红黑树
实现一个红黑树需要掌握一些关键技巧,包括节点的表示、插入操作和删除操作。通过理解红黑树的规则和调整方法,并结合具体的案例分析,我们可以更好地掌握红黑树的实现过程。在实际应用中,红黑树可以提高数据的查找、插入和删除效率,是一种非常有用的数据结构。希望本文能够帮助你轻松实现一个红黑树。原创 2024-10-19 00:00:00 · 171 阅读 · 0 评论 -
堆的应用:如何寻找 TOP 10 热门搜索关键词?
在当今数字化时代,搜索引擎和各种在线平台每天都会产生大量的搜索数据。了解热门搜索关键词对于企业、营销人员和内容创作者来说至关重要,因为它可以帮助他们了解用户需求、趋势和热点话题。在本文中,我们将探讨如何使用堆这种数据结构来高效地寻找 TOP 10 热门搜索关键词。原创 2024-10-17 00:00:00 · 277 阅读 · 0 评论 -
堆和堆排序:为什么说堆排序没有快速排序快?
虽然堆排序和快速排序在平均情况下的时间复杂度都是 O(nlogn),但由于数据局部性、比较和交换次数以及适应性等方面的差异,通常情况下快速排序比堆排序更快。然而,在实际应用中,具体的性能还会受到数据规模、数据分布以及硬件环境等因素的影响。在选择排序算法时,需要根据具体情况进行综合考虑。原创 2024-10-17 00:00:00 · 207 阅读 · 0 评论 -
深度和广度优先搜索:如何找出社交网络中的三度好友关系?
在社交网络的分析和研究中,了解用户之间的关系是非常重要的。其中,找出特定用户的三度好友关系(即距离自己三步的好友)可以帮助我们更好地理解社交网络的结构和传播路径。在本文中,我们将探讨如何使用深度优先搜索和广度优先搜索来找出社交网络中的三度好友关系。原创 2024-10-16 00:00:00 · 163 阅读 · 0 评论 -
图的表示:如何存储微博、微信等社交网络中的好友关系?
在存储微博、微信等社交网络中的好友关系时,可以根据实际情况选择合适的图的存储方式。如果社交网络中的用户数量非常大,而好友关系相对较少,那么邻接表或链式前向星可能是更好的选择,因为它们可以节省空间。如果需要快速判断两个用户之间是否是好友,那么邻接矩阵可能更合适,因为它可以在常数时间内完成判断。无论选择哪种存储方式,都需要考虑到社交网络的规模、操作的频繁程度以及空间和时间的效率等因素。原创 2024-10-16 00:00:00 · 467 阅读 · 0 评论 -
如何选则合适的图存储方式?
选择合适的图存储方式需要综合考虑图的类型、规模、操作需求以及性能要求等因素。通过了解不同存储方式的特点,并结合实际应用场景进行分析,可以选择出最适合的图存储方式,以提高程序的性能和效率。原创 2024-10-15 00:00:00 · 284 阅读 · 0 评论 -
字符串匹配:如何借助哈希算法实现高效字符串匹配?
哈希算法是一种将任意长度的输入数据转换为固定长度输出数据的算法。这个输出数据通常被称为哈希值或散列值。确定性:对于相同的输入数据,总是产生相同的哈希值。快速计算:可以在相对较短的时间内计算出哈希值。不可逆性:很难从哈希值反向推导出原始输入数据。常见的哈希算法有 MD5、SHA-1、SHA-256 等。原创 2024-10-15 00:00:00 · 233 阅读 · 0 评论