
Python
yongjian_luo
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python fork 守护进程<转>
# -*-coding:utf-8-*- import sys, os '''将当前进程fork为一个守护进程 注意:如果你的守护进程是由inetd启动的,不要这样做!inetd完成了 所有需要做的事情,包括重定向标准文件描述符,需要做的事情只有 chdir() 和 umask()了 ''' def daemonize(stdin='/dev/null',stdout=转载 2014-07-15 15:25:56 · 651 阅读 · 0 评论 -
python thrift 示例<转>
转自:http://tkang.blogspot.com/2010/07/thrift-server-client-in-python.html 在编写python的thrift代码时,需要先安装thrift module $ cd thrift-root/lib/py/ $ sudo python setup.py install 下面是一个python的例子 helloworl转载 2014-08-25 15:31:06 · 677 阅读 · 0 评论 -
Thrift in python<转>
Thrift官网上的文档很少,从网上搜到的也大都千篇一律,即使是《Thrift: the missing guide》对如何构建python的server和client也没有进行详尽讲述。本博特意看了下thrift提供的python lib,对书写相应的server和client进行了简单的总结,如有错误,欢迎大家指正。 1. Thrift network stack Transpor转载 2014-08-25 16:03:48 · 892 阅读 · 0 评论 -
thrift for python部署<转>
安装这个是为了更方便的使用python操作hive。 获取thrift, 在linux命令下: wget http://labs.renren.com/apache-mirror/thrift/0.8.0/thrift-0.8.0.tar.gz tar -xvf thrift-0.8.0.tar.gz cd thrift-0.8.0 ./configure转载 2014-08-25 14:53:52 · 912 阅读 · 0 评论 -
Python多线程学习<转>
Python多线程学习 一.创建线程 1.通过thread模块中的start_new_thread(func,args)创建线程: 在Eclipse+pydev中敲出以下代码: Python代码 # -*- coding: utf-8 -*- import thread def run_thread(n): for转载 2014-08-06 16:22:40 · 660 阅读 · 0 评论 -
Python线程指南<转>
1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图所示: 1.2. 线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"s转载 2014-08-06 16:49:15 · 541 阅读 · 0 评论 -
Python守护进程详解<转>
第一章, 原理 本章仅作了解就可以了, 因为这些细节性的东西实在是无聊, 所以我强烈推荐你直接跳到第二章。 当然, 如果你有足够的耐心和能力, 还是看下去吧 …… 通常我们把后台进程叫做 "守护进程"、"精灵进程", 或者 daemon。 在 Unix 下, 我们使用 fork 实现。 import os def daemonize(): # 首先 fork转载 2014-07-15 15:20:46 · 1662 阅读 · 0 评论 -
python linux PDB调试<转>
最近在项目中使用了python,还好吧,基本上语法什么的还可以很快理解,但是在调试的时候还感觉很麻烦,看到了一个文章,关于pdb的,感觉还很方便,记录下 用PDB库调试Python程序 如果使用过微软技术的朋友应该体会过微软的Visual Studio系列IDE给debug程序带来的方便,换了个工作就没有Visual Studio了,对于我这种从未在非GU转载 2014-07-22 20:38:15 · 778 阅读 · 0 评论 -
Python多进程Pool相关函数<转>
Pool相关函数 1、apply(func[, args[, kwds]]) apply用于传递不定参数,同python中的apply函数一致(不过内置的apply函数从2.3以后就不建议使用了),主进程会阻塞于函数。 主进程的执行流程同单进程一致。 2、apply_async(func[, args[, kwds[, callback]]]) 与apply用法转载 2014-06-30 22:08:18 · 656 阅读 · 0 评论 -
Json概述以及python对json的相关操作<转>
什么是json: JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家转载 2014-07-21 21:03:12 · 513 阅读 · 0 评论 -
Python实现堆栈和队列<转>
1.python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了。stack.py的程序如下: class Stack(): def __init__(self,size): self.size=size; self.stack=[]; self.top=-1; def p转载 2014-07-21 18:53:47 · 703 阅读 · 0 评论 -
python中multiprocessing.pool函数介绍<转>
python自2.6开始提供了多进程模块multiprocessing,这里主要是介绍multiprocessing下的Pool的几个函数 一 apply(func[, args[, kwds]]) apply用于传递不定参数,同python中的apply函数一致(不过内置的apply函数从2.3以后就不建议使用了),主进程会阻塞于函数。 for x in gen_list(l)转载 2014-06-30 21:06:07 · 3015 阅读 · 0 评论 -
Python多进程并发操作中进程池Pool的应用<转>
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约 大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个 还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候 就到了。 Pool可以提供指定转载 2014-06-30 18:21:56 · 749 阅读 · 0 评论 -
python文件夹遍历,文件操作,获取文件修改创建时间<转>
在Python中,文件操作主要来自os模块,主要方法如下: os.listdir(dirname):列出dirname下的目录和文件 os.getcwd():获得当前工作目录 os.curdir:返回当前目录('.') os.chdir(dirname):改变工作目录到dirname os.path.isdir(name):判断name是不是一个目录,name不是目录就返回fal转载 2014-07-21 14:47:56 · 709 阅读 · 0 评论 -
Python daemon 守护进程<转>
import sys, os def main(): """ A demo daemon main routine, write a datestamp to /tmp/daemon-log every 10 seconds. """ import time f = open("/tmp/daemon-log", "w") w转载 2014-07-15 15:30:17 · 594 阅读 · 0 评论 -
python 字典排序<转>
#-*- encoding=utf-8 -*- import operator #按字典值排序(默认为升序) x = {1:2, 3:4, 4:3, 2:1, 0:0} sorted_x = sorted(x.iteritems(), key=operator.itemgetter(1)) print sorted_x #[(0, 0), (2, 1),转载 2014-08-27 16:41:00 · 445 阅读 · 0 评论