1. TF-IDF定义:
tf-idf, term frequency - inverse document frequency,词频 -逆向文档频率。
用于评价一个单词在整个语料库中的重要程度, 即这个词是否对不同文档有着很好的区分能力.
如果某个词语term在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为这个词语具有很好的文档分类能力。
它通常用于词加权, 即作为权重因子(weight factor) 被用于信息检索.
2. TF-IDF公式:
ii 表示term, jj 表示doc. DD 表示文档总数.
tf(i,j)=i在j中的出现频次j中的总词数tf(i,j)=i在j中的出现频次j中的总词数
表示词语i在文档j中的频率。
idf(i)=log(D包含i的文档数)idf(i)=log(D包含i的文档数)
含有词语i的文档数越少,则此项得分最高。
tf_idf(i,j)=tf(i,j)×idf(i)tf_idf(i,j)=tf(i,j)×idf(i)
衡量词语i在j中的重要性.