自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(37)
  • 收藏
  • 关注

原创 Deconstructing Denoising Diffusion Models for Self-Supervised Learning

在本研究中,作者们研究了最初用于图像生成的去噪扩散模型(DDM)的表示学习能力。作者们的理念是解构DDM,逐步将其转变为经典的去噪自动编码器(DAE)。这种解构过程使作者们能够探索现代ddm的各个组成部分如何影响自监督表征学习。作者们观察到,只有很少的现代模块对于学习良好的表示是至关重要的,而其他许多组件则是不必要的;作者们把多余的简化,化繁为简得出了一种高度简化的方法类似于经典的DAE。l-DAE在很大程度上类似于经典DAE,可以在自监督学习中表现得很有竞争力,关键原因是加有噪声的低维潜在空间。

2024-03-23 22:26:08 1133 1

原创 A Decade’s Battle on Dataset BiasAre We There Yet?

数据集在计算机出现之前成为“刺激”;1978以来,逐渐形成用Cameraman图像作为测试图像去评估计算机视觉算法的概念;机器学习方法的引入,也清晰了数据集的定义;ImageNet数据集如果用1000个SVM分类器进一步研究问题是不太可能的,所以有了更多样的任务,也就发展后续的深度学习,转变成另一种模式:在ImageNet上预训练表征并将其转移到下游任务中;后续则越来越多数据集为了预训练而构建,并不是单一的一个任务方向;后续数据集通过不同的领域划分;之后的内容都是在介绍数据集的偏见有多么的不好;

2024-03-18 01:13:33 1106

原创 Rethinking ImageNet Pre-training

COCO上进行随机初始化(从零开始)训练,无需任何预训练,就可以达到竞争性目标检测和实例分割的准确性如果:(i)我们使用适当的归一化技术进行优化,(ii)我们对模型进行了足够长的训练,以弥补前训练的不足,没有根本的障碍阻止我们从头开始训练可以从零开始训练大型模型——比ResNet101大4倍——而不会过度拟合(i) ImageNet预训练的加速收敛,特别是在培训(ii) ImageNet预训练不会自动提供更好的正则化(iii)当目标任务/指标对精确定位的空间预测更敏感时,ImageNet的预训练。

2024-03-18 21:23:39 873 1

原创 断更后的故事1

描述了在断更后的一系列故事以及个人对大学本科阶段成长的总结

2024-01-07 17:40:51 863 1

原创 clion在linux设置桌面启动图标(jetbrains全家桶均适用)

clion和pycharm在liunx设置图标启动jetbrains全家桶均适用

2023-03-01 15:17:58 1640

原创 RGB颜色对照表

在用python+opencv进行画图的时候,都会用到不同的色彩,当特定的色彩搭配后,会让图像更加美观。以下是RGB图像的三通道参考值的网址:RGB颜色对照表网址下面是颜色对照表的示例图:

2021-06-12 16:49:37 6367 2

原创 用python+opencv实现数据清洗

1、数据集简述:        博主依据视频抽帧得到的图像数据集为基础,进行相应的人工数据清洗;因为博主观察到图像中有一些是不符合项目要求的图像,为了方便接下来的人工标注,必须剔除掉不符合要求的图像。视频抽帧项目博客地址视频抽帧得到的图像:2、代码介绍:        博主的思路是利用cv2.imshow显示窗口的原理和cv2.waitKey读取键值的原理,进行每张图片的筛选;符合要求的按“o”,不符合要求的按“f

2021-06-09 11:01:30 2002 1

原创 用python+opencv实现视频抽帧

1、数据集简述:虽然有主流庞大的COCO、VOC数据集,但是科研人员仍需要特殊领域要求的数据集,所以采用人工实地采集的方式进行收集数据集图像;通过拍照收集图像过于繁琐,所以通常是将摄像头无规则的移动旋转以及远近拉缩,进而录制视频;再通过视频抽帧的方式得到大量的图像,再将这些图像进行人工标注处理。博主通过一个水下录制视频为例子,当这类图像在网上鲜有存在时,要求有关技术人员进行实拍采集,下图即为采集得到的视频:为了避免不符合项目的要求的数据增强,博主要求技术人员在录制视频时最大程度地让摄像头进行移动、

2021-06-09 10:23:51 18340 19

原创 用C实现二叉树遍历算法(数据结构作业)

#include<stdio.h>#include<stdlib.h>#define MaxSize 255typedef char ElemType;typedef struct BiTNode { ElemType data; struct BiTNode *lchild, *rchild;} BiTNode, *BiTree;typedef struct { BiTree BNode[MaxSize]; int front, rear;} SqQue

2021-06-09 09:40:06 175

原创 用python将没有目标的图片抽出数据集文件夹

1、概述:博主是基于2021年全球小麦目标检测计数比赛的数据集进行分析,发现CSV标签文件中是存在no_box也就是没有标注框的情况。为了方便菜鸡的我直接去用目标检测算法,博主将无目标的图像抽取处理,方便后续批量转换CSV文件为XML文件:点击转到博主编写的转换CSV文件代码博客import cv2import csvimport argparseimport numpy as npimport pandas as pdfrom tqdm import tqdmparser = a

2021-06-05 20:27:01 486

原创 用python将CSV标签文件(批量)转换为XML文件(单个)

博主是基于2021小麦目标检测以及计数比赛提供官方数据集作为例子,将官方提供的含有大量标签的CSV文件转换为VOC格式的XML标注文件,方便算法进心训练。1、比赛地址以及概况:2021年全球小麦目标检测计数比赛2、图像数据集:3、标签文件数据集:4、转换代码:编辑XML文件的函数需要用到xml.etree.ElementTree的函数进行字符串数据的写入,在这里博主编写csvtoxml函数,以图像名、标注框四个坐标、域(domain)作为输入,输出为XML文件信息树,便于接下来的保

2021-06-05 20:13:55 1291 8

原创 用python根据XML文件批量画出标注框

根据XML文件批量画出标注框做一个项目需要很多流程,其中最为重要的是检查数据集,很多bug到最后发现是数据集标注错误,本文提供标注GT框的代码:import osimport xml.dom.minidomimport cv2 as cvfrom tqdm import tqdmImgPath = 'D:/Download/img_512_voc_xml/VOC2007/JPEGImages'AnnoPath = 'D:/Download/img_512_voc_xml/VOC2007/An

2021-04-27 16:07:48 1250 1

原创 AlignDet

论文下载https://arxiv.org/pdf/1908.01570.pdf论文代码:代码未开源论文摘要:在所有的单阶段检测器中都存在一个基本问题,即锚盒与卷积特征之间的不对齐,这严重影响了单阶段检测器的性能。在这项工作中,作者揭示了广泛使用的im2col运算符和RolAlign运算符之间的深层联系。在观察两者发挥的作用后,我们提出了一个RolConv算子,在单阶段检测中对齐特征及其相应的锚点。然后,作者设计了一个完全卷积的AlignDet体系结构,它结合了学习锚点的灵活性和对齐..

2021-03-07 21:37:11 880 1

原创 论文笔记——Yolov4

论文下载:https://arxiv.org/pdf/2004.10934v1.pdf论文代码:https://github.com/AlexeyAB/darknet论文摘要:从以往的工作中表明大量的特征可以提高卷积神经网络(CNN)的精度。需要在大数据集上对这些特征组合进行实际测试,并对结果进行理论论证。某些特征只对特定模型和特定问题仅对小规模数据集有效。而一些特征,如批量标准化(batch-normalizetion)和残差连接(residual-connections),适用于..

2021-02-27 17:18:37 263

原创 论文笔记——Efficientdet

论文下载:https://arxiv.org/pdf/1911.09070.pdf论文代码:https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch论文摘要:作者提出了一种加权双向特征金字塔网络(BiFPN),该网络能够实现简单、快速的多尺度特征融合;其次,提出了一种复合尺度方法,对所有骨干网、特征网络和盒/类预测网络同时统一尺度分辨率、深度和宽度。基于这些优化和更好的骨干,作者开发了一个新的对象检测器系列,称为Effic..

2021-02-22 15:56:16 525

原创 Mask RCNN

论文下载:https://arxiv.org/pdf/1703.06870.pdf论文代码:https://github.com/facebookresearch/Detectron论文摘要:本文提出了一个概念简单、灵活和通用的对象实例分割框架,有效地检测图像中的对象,同时为每个实例生成高质量的分割掩码。这个框架称为Mask R-CNN,由Faster R-CNN扩展,通过增加一个分支来预测一个对象掩模,并与现有的分支来识别边框。Mask R-CNN很容易训练,并且只在Faster ..

2021-02-18 21:01:38 736

原创 Faster R-CNN

论文下载:https://arxiv.org/pdf/1506.01497.pdf论文代码:https://github.com/rbgirshick/py-faster-rcnn论文摘要:目前最先进的目标检测网络依赖于区域建议算法(region proposal algorithms)假设目标位置。该论文研究中,引入一种区域建议网络(RPN),RPN与检测网络共享图像的卷积特征。并且RPN是一个全卷积网络,同时预测每个位置的目标框(objects bounds)和目标分数(objec.

2021-01-19 15:57:40 284

原创 论文笔记——Sparse R-CNN

论文下载:https://msc.berkeley.edu/research/autonomous-vehicle/sparse_rcnn.pdf论文代码:https://github.com/PeizeSun/SparseR-CNN论文摘要:提出一种纯稀疏(purely sparse)的图像目标检测方法,从图像中提取总长度为N的建议框,用来分类和回归位置,Sparse-RCNN避免对象建议设计(object candidates design)和多到一的标签分配(many-to-o..

2020-12-13 10:47:24 6753 3

原创 论文笔记——CPN(Corner-Proposal-Network)Det

论文下载:https://arxiv.org/pdf/2007.13816.pdf论文代码:https://github.com/Duankaiwen/CPNDet论文摘要:该论文提出一种新型的anchor free两阶段框架,该框架首先通过anchor free方法检测出目标的角关键点(corner keypoint )进行目标建议的组合,然后通过单独的分类阶段(两阶段思想,第一步简单的筛选正负样本,第二步进行每个正样本的类分类)给每个建议分配一个类标签。论文的方法被称为角建议网络..

2020-12-06 12:04:12 972

原创 keil设置光标(竖还是横)

keil设置光标(竖还是横)光标形状不一样,操作上肯定有所不一样没有小键盘的可以寻找键盘右上角的insert健,一般是ins缩写。有小键盘的,可以shift+0(小键盘的0)

2020-11-19 19:43:51 10146 2

原创 ResNet

作者提到,更深层次的神经网络更难训练,提出一个残差学习框架(residual learning framework)能从大幅度增加的深度获得准确性,且这些残差网络(residual networks)更容易优化。作者在ImageNet数据集上评估高达152层的残差网络复杂性依然很低,尽管它比VGG网深8倍。该网络在2015年的ILSVRC和COCO 竞赛的各项目中均获得第一名。

2020-11-13 17:06:25 273

原创 论文笔记——Densely Connected Convolutional Networks(DenseNet)

论文下载:https://arxiv.org/pdf/1608.06993.pdf论文代码:https://github.com/liuzhuang13/DenseNet论文摘要:作者提到,卷积网络在靠近输入的层和靠近输出的层之间包含较短的连接(即输入卷积层的特征和卷积层输出的特征进行整合连接),那么这个网络的训练就可以更深入、更准确、更有效。作者基于这一观察,引入DenseNet(Dense Convolutional Network),以向前传递特征的方式连接每一层和其他的层(a..

2020-11-03 16:33:52 455 1

原创 Focal Loss for Dense Object Detection(RetinaNet)

目前一阶段(one stage)目标检测器比二阶段(two stage)的算法更更快、更简单,但在精度方面仍然落后于二阶段检测器。在本文中,作者将研究这一情况的主要原因。作者发现其主要原因是密集的神经网络检测器(dense detectors)在训练中会遇到极端的前景-背景类不平衡(foreground-background class imbalance)。作者创造性的重新定义标准的交叉熵损失(cross entropy),来降低分配给良好例子的损失权值,从而解决这个类不平衡问题。

2020-11-01 17:31:26 309 1

原创 论文笔记——Comparing to Learn

论文下载:https://arxiv.org/pdf/2007.07423.pdf论文代码:https://github.com/funnyzhou/C2L_MICCAI2020论文摘要:在深度学习时代,预训练模型在医学图像分析中发挥着重要作用,其中ImageNet预训练作为最佳方法被广泛采用。作者也提到,自然图像和医学图像存在着明显的领域差距,比如CT图像和一般的RGB图像。所以作者提出了一种新的预训练方法,称为“比较学习(Comparing to Learn)”,顾名思义它通过比..

2020-10-30 15:04:52 711 3

原创 论文笔记——EfficientNet Rethinking Model Scaling for Convolutional Neural Networks

论文下载:https://arxiv.org/pdf/1905.11946.pdf论文代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet论文摘要:该论文系统地研究了模型缩放,认为细致地平衡网络的深度、宽度和分辨率可以得到更好的性能。在此基础上,作者提出了一种新的尺度划分方法,即利用简单而高效的复合系数(compound coefficient)来均匀地划分深度、宽度、分辨率这三个维..

2020-10-25 20:00:07 356

原创 Aggregated Residual Transformations for Deep Neural Networks(ResNeXt)

该论文提出了一个简单、高度模块化的图像分类网络结构。该网络结构是通过重复一个构建块(buildng block)搭建的,这个构建块聚合了一组具有相同拓扑结构(same topology)的转换。这种策略提出了一个新的维度概念,作者称为“基数(cardinality)”,定义为转换维度的大小(the size of the set of transformations),并且是作为一个除了深度和宽度对神经网络必不可少的因素。在ImageNet-IK数据集上,实验表明,即使在维持复杂性的限制条件下,

2020-10-24 16:44:24 623

原创 论文笔记——Dilated Residual Networks(DRN)

论文下载:https://arxiv.org/pdf/1705.09914.pdf论文代码:http://vladlen.info/publications/dilated-residual-networks/论文摘要:用于图像分类的卷积网络会逐渐降低图像的分辨率,图像以微小的特征图表现出来,其中原图像场景的空间结构不再可见。这些问题可以通过设置空洞卷积参数(dilation)来缓解,空洞卷积提高了输出特征图的分辨率,而不降低单个卷积核的感受野。作者表明,在不增加模型深度或复杂性的..

2020-10-14 21:50:05 1235 2

原创 论文笔记——Deep Layer Aggregation(DLA)

论文下载:https://arxiv.org/pdf/1707.06484.pdf论文代码:https://github.com/ucbdrive/dla论文摘要:视觉识别需要丰富的表示,跨级别从低到高,范围从小型到大型,分辨率从细到粗。架构方面的工作在网络骨干维度的方面上逐渐有突破,人们都倾向于设计更深或更广的网络架构。但是作者认为如何在网络中最好地聚合层和块值得进一步的探索。在这个思路上,作者提出深层聚合方案(Deep Layer Aggregation),通过更深层次的聚合来增..

2020-10-12 20:40:06 1563

原创 论文笔记——ResNeSt :Split-Attention Networks

论文下载:https://arxiv.org/pdf/2004.08955.pdf论文源码:https://github.com/zhanghang1989/ResNeSt论文摘要:一些目标检测和语义分割算法已让使用ResNet(残差网络)的改进架构作为骨干网络(backbone),因为它们的简单和模块化结构。作者展示了一个模块化的分散注意力模块(Split-Attention block),通过堆叠这些模块,构建了新的ResNet改进架构–ResNeSt。作者保留了整个ResNet..

2020-10-11 22:19:18 860

原创 论文笔记——Squeeze-and-Excitation Networks(SE-Net)

论文下载:https://arxiv.org/pdf/1709.01507.pdf论文源码:https://github.com/hujie-frank/SENet论文摘要:卷积神经网络(CNNs)的核心构造是卷积操作器(convolution operator),它使网络能够通过在每一层的局部接受域内融合空间和信道信息来构建信息特征。作者通过大量的研究发现,大部分改进的重点是提高整个特征层次的空间编码质量来增强CNN的表征能力。在这项工作中,作者关注的是通道关系,并提出了一个新的结..

2020-10-11 16:52:29 668

原创 论文笔记——Stitcher:Feedback-driven Data Provider for Object Detection

论文笔记——Stitcher: Feedback-driven Data Provider for Object Detection论文下载:https://arxiv.org/pdf/2004.12432.pdf论文摘要:代码暂未开源该论文摘要概括:目标检测器的效果是根据物体尺度的不同而不同,在小对象性能上是最不令人满意的。作者通过研究发现,在大多数的训练迭代中,小对象对总损失的贡献很小,导致大小对象优化不平衡,从而导致性能不佳。该论文名充分表达了作者改进的思想,Feedback-dr

2020-10-11 09:59:50 755 1

原创 用C语言编写简单的通讯录(大一课程作业)

用C语言编写简单的通讯录(大一课程作业)该系统概述:因本人只学习了C语言的基础部分,所以编写该系统时只使用了一个C文件。存储通讯录信息以txt文件方式保存。系统设计:显示主菜单主函数:int main();创建录入信息子函数:void book_create();显示信息子函数1:void book_reada(int*count);显示信息子函数2:void book_readb(int*count);查询信息子函数 :void book_search();添加信息子函数 :void

2020-09-30 16:15:37 15492 7

原创 Keil5新建工程小白指南

Keil5新建工程小白指南安装Keil5教程:这里给大家安利个对学生党(白嫖党)非常友好的公众号:软件安装管家。对话框发送对应的软件,即会推出该软件系列的安装教程新建工程:在桌面新建一个文件夹(也可在其他地方建立,只要找得到就行)然后打开Keil5软件,点击项目,新建项目在这里我在KeilProject中再新建了个文件夹,FirstProject在FirstProject里面新建一个工程,Project点击保存后会出现这个界面,也就是让你选择一些版本的单片机,在这里依据我的课程要求

2020-09-29 21:58:23 7450 1

原创 用python拆分大数据量csv文件

单个数据量多的csv文件转化多个单个数据量小csv文件转化前的大数据量的csv文件:转化后的多个小数据量的csv文件:本代码利用pandas库读取csv文件、写入文件。再利用列表进行分割匹配操作(该csv文件target为1时是连续两行数据,所以需要上一个与接下来一个的数据名进行比较,相同则被分配到同一个csv文件)直接上代码:import pandas as pdimport csvimport numpy as npimport argparseif __name__

2020-07-29 19:11:48 4214

原创 用python批量把csv文件(单个)转化成xml文件(单个)

CSV文件(目标检测,单个图片对应单个文件、多个目标)转xml文件有目标的csv文件:无目标的csv文件:读取csv并写入xml(创建新的xml)#编辑xml文件的函数def csvtoxml(fname): with open(fname, 'r') as f: reader = csv.reader(f) #读取csv文件 a = Element('annotation') b = SubElement(a, 'fol

2020-07-29 18:23:35 1778 2

原创 用python批量把DICOM(dcm)转换成jpg图像

用python把DICOM(dcm)转换成jpg图像直接上代码import osimport pydicom #用于读取DICOM(DCOM)文件import argparse# import scipy.misc #用imageio替代import imageioif __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--origin', typ

2020-07-27 17:00:54 6360 21

原创 用pytorch搭建简单的语义分割(可训练自己的数据集)

用pytorch搭建简单的语义分割(可训练自己的数据集)灵感来源:https://blog.csdn.net/weixin_44791964/article/details/102979289本博客的搭建的网络源于这位博主,不过基于本人电脑配置做了一些网络层数的改动。整体文件目录下排放:1、编码器Mobilenet:这里也有大佬关于Mobilenet的博客Mobilenet的介绍。简单来说Mobilenet利用深度卷积使得数据量大大减少,有助于配置较低的机器,也可以应用到手机上。impor

2020-07-07 22:59:17 8206 21

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除