结构篇| 浅析LLaMA网络架构

01 前言

LLaMA(Large Language Model Meta AI)是由Meta AI 发布的一个开放且高效的大型基础语言模型。为什么突然讲这个模型,主要LLaMA 已经成为了最受欢迎的开源大语言模型之一,LLaMA 系列模型在学术界和工业界引起了广泛的 关注,对于推动大语言模型技术的开源发展做出了重要贡献。

第一,开源,去了解其内部模型具有可行性。第二,它很受欢迎,说明在LLM界还是具有很强代表性,了解它内部结构有助于深入理解LLM发展路径。第三,众多 研究人员纷纷通过指令微调或继续预训练等方法来进一步扩展 LLaMA 模型的功 能和应用范围。其中,指令微调由于相对较低的计算成本,已成为开发定制化或专业化模型的首选方法,也因此出现了庞大的 LLaMA 家族。可以说LLaMA成为现在大部分互联网拥抱的对象,了解它,有助于拿下好offer。

总之,LLaMA 将有助于使 LLM 的使用和研究平民化,是一个深度学习LLM好切入口。同时,LLaMA已在教育、法律、医疗等专业领域有重要的应用场景,这对于构建大模型生态有先天的优势。

在这里插入图片描述

02 LLaMA架构

### Llama 2 架构分析 #### 模型概述 Llama 2 是由 Meta 发布的一个大型语言模型系列,该版本不仅继承了前代的基础特性,在多个方面进行了改进和增强。作为预训练版本,Llama 2 提供了一个强大的基础框架用于各种自然语言处理任务[^3]。 #### 模型架构特点 Llama 2 的核心仍然基于 Transformer 结构,这是当前大多数先进语言模型的选择。然而,相较于早期版本和其他同类产品,Llama 2 引入了一些特定的技术调整: - **多层编码器堆叠**:采用了更深层的神经网络结构,增加了模型表达复杂模式的能力。 - **自注意力机制优化**:通过对自注意力模块的设计改良,提高了计算效率并减少了内存占用。 - **位置嵌入方式革新**:引入新的位置编码方案,使得模型能够更好地捕捉序列中的长期依赖关系[^4]。 #### 训练与微调策略 除了基本架构上的进步外,Llama 2 还特别强调了高质量数据集的重要性以及有效的迁移学习方法的应用。具体来说, - 对于对话场景特化的 Llama 2-chat 版本,则是经过专门针对聊天交互的任务导向性微调过程得到的结果,这其中包括但不限于监督学习加强化学习相结合的方式来进行参数调整。 #### 开源贡献及其影响 值得注意的是,Llama 2 的开源性质极大地促进了社区内的研究与发展活动。许多开发者利用这一机会探索不同的应用场景,并尝试通过指令微调或其他形式的再训练来拓展模型的功能边界。这种开放的态度也加速了整个领域内知识和技术共享的速度。 ```python # Python代码示例展示如何加载预训练好的Llama 2模型 from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf") text = "Once upon a time" inputs = tokenizer(text, return_tensors="pt").input_ids outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿阿三

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值