AIGC产品经理面试高频19题及答案

我系统整理了最近学生近50场AIGC产品经理面试(包含1-4面)中出现频次5次以上的面试问题汇总,一共三大类19道。最近一个月花了很多时间把完整的参考答案整理完了,一共2万字,我会通过三篇文章免费发给大家

完整版:

🍎第一部分:对于AIGC整体认知和以及落地场景的洞察

🗣️ 1.1 问题列表:

1)谈谈你对AI/AIGC的理解(偏宏观)

2)AI当前在XX行业都有哪些落地场景和应用?(XX要么是求职者所在的行业,要么是指应聘公司所属的行业)

3)你如何看待AIGC在文本/图片/音频/视频生产领域的应用前景?(要么是求职者AI项目的领域,要么是应聘岗位负责的领域)

4)有使用/体验过哪些比较好的AI产品?分别满足了什么用户价值?

5)AIGC技术和人工之间的平衡问题?

6)一款AI产品落地整个过程中,产品经理的工作流程和核心职责是什么?

1.2 考察点: 主要考察求职者对AI的发展现状以及阶段是都有基础认知,以及是否对AI当前不同场景有足够的洞察力。

🍎第二部分:对于大模型能力的技术理解和认知

2.1 问题列表:

1)什么是大语言模型?实现原理是什么?跟之前的算法模型有什么区别?

2)大语言模型有哪些的优势/挑战/局限性?

3)都体验过市面上哪些大语言模型?异同点是什么?

4)你是怎么做微调的?常用的微调方式有哪些?

5)对于机器人出现的幻觉问题你们是怎么避免的?

6)你了解哪些作图的模型?自己训练过Lora吗?

7)如何看待AI Agent?

  1. 有使用过Langchain和ControlNet吗?

2.2 考察点: 主要考察求职者对于大模型技术的深度理解,如何运用大模型来满足需求、提供用户/商业价值。技术发展日新月异,以上问题可以考察求职者是否具备持续学习以及讲学到的知识跟工作相结合的能力。

🍎第三部分:AI产品项目/工作经验深挖

3.1 问题列表:

1)项目背景介绍?为什么要做这个项目?为什么要自己公司搞?

2)产品的整体框架以及实现流程

3)这个项目你们用的模型是哪个?为什么选这个模型?这个模型迭代到什么版本了?更新了哪些能力?跟其他模型比的优劣势是什么?

4)整个过程中你遇到的最大的困难点是什么?如何解决的?

5)项目上线之后如何评估效果?算法指标有哪些?业务指标有哪些?效果如果?后续优化思路和思考?

3.2 考察点: 考察求职者是否真正具备AI落地经验,是否能够具备从0到1或者从1到N迭代项目的经验和能力。

💡7 什么是大语言模型?实现原理是什么?跟之前的算法模型有什么区别?

7.1 该问题面试官的考核点🤔

1. 基础知识 :考察候选人对大语言模型基本概念的理解。

2. 技术原理 :评估候选人对大语言模型实现原理的掌握程度。

3. 对比分析 :观察候选人对大语言模型与之前算法模型区别的认知。

4. 表达和逻辑 :衡量候选人对复杂概念的清晰表达和逻辑组织能力。

7.2 参考答案🤔

🌟1. 大语言模型的定义 :

  • 大语言模型:是通过大规模数据集训练的深度学习模型,能够理解和生成自然语言文本。LLM依赖于神经网络架构,通常具有数亿到数千亿参数,具备强大的语言理解和生成能力。

  • 代表模型 :如OpenAI的GPT-3、GPT-4,Google的BERT、T5等。

🌟2. 实现原理 :

  • 神经网络架构 :大语言模型通常基于Transformer架构,具有强大的并行处理能力和自注意力机制,使其能够有效捕捉长距离依赖关系。

  • 自注意力机****制 :允许模型在处理每个词时考虑输入序列中所有其他词的影响,从而更好地理解上下文关系。

  • 预训练和微调

 -  预训练 :在大规模无监督数据集上进行预训练,通过预测掩盖词(如BERT)或下一个词(如GPT)来学习语言表示。

 -  微调 :在特定任务的有监督数据集上进行微调,使模型适应具体应用场景。
  • 参数量和计算资源 :大语言模型通常包含大量参数,需要高性能计算资源进行训练,如GPU集群或TPU集群。

🌟3. 与之前算法模型的区别 :

  • 模型规模
 -  大语言模型 :参数规模巨大,通常在数亿到数千亿之间,能够处理复杂的语言任务。

 -  传统算法模型 :参数规模相对较小,处理能力和表现力有限。
  • 训练数据
 -  大语言模型 :利用大规模数据集进行训练,数据量通常达到TB级别,覆盖范围广泛。

 -  传统算法模型 :依赖于较小的数据集,数据量通常在GB级别以内,覆盖范围有限。
  • 架构
 -  大语言模型 :基于Transformer架构,具有自注意力机制和并行处理能力。

 -  传统算法模型 :多基于RNN(循环神经网络)或CNN(卷积神经网络)等架构,处理长距离依赖关系较差。
  • 性能和应用
 -  大语言模型 :在语言理解、生成、翻译等任务上表现出色,广泛应用于NLP领域的各个方面。

 -  传统算法模型 :在特定任务上表现有限,适用范围较窄。

💡8 大语言模型有哪些的优势/挑战/局限性?

8.1 该问题面试官的考核点🤔

1. 全面理解 :考察候选人对大语言模型优势、挑战和局限性的全面了解。

2. 分析能力 :评估候选人对大语言模型优缺点的分析能力。

3. 实际应用 :观察候选人能否结合实际应用场景讨论大语言模型的影响。

4. 表达和逻辑 :衡量候选人对复杂概念的清晰表达和逻辑组织能力。

8.2 参考答案🤔

🌟1. 优势 :

  • 语言理解和生成能力
 -  自然语言理解 :大语言模型能够处理复杂的语言任务,如问答、翻译、情感分析等,表现优异。

 -  文本生成 :能生成连贯且富有创意的文本,适用于内容创作、对话系统等场景。
  • 通用性和适应性
 -  多任务学习 :预训练的通用模型可以通过微调适应不同的NLP任务,减少了单独训练每个任务的需求。

 -  广泛应用 :在多个领域广泛应用,如医疗、教育、金融等,带来显著效率提升和创新机会。
  • 大规模数据处理
 -  处理海量数据 :能利用大规模数据进行训练,捕捉复杂的语言模式和知识。

 -  高效推理 :具备强大的推理能力,能够在不同上下文中生成相关内容。

🌟2. 挑战 :

  • 计算资源需求
 -  训练成本高 :训练大语言模型需要大量的计算资源和时间,通常依赖于高性能GPU或TPU集群。

 -  运行成本高 :在实际应用中,推理过程仍需要较高的计算资源,尤其是在实时应用场景中。
  • 数据依赖性
 -  数据质量 :模型性能高度依赖于训练数据的质量,低质量数据可能导致模型生成有偏见或不准确的内容。

 -  数据隐私 :处理大规模数据时,面临数据隐私和安全问题,需谨慎处理用户数据。
  • 伦理和法律问题
 -  内容生成的责任 :生成的内容可能包含错误信息或有害内容,责任归属问题复杂。

 -  版权问题 :生成的内容可能涉及版权问题,需要解决法律上的合规性。
  • 模型解释性
 -  黑箱模型 :大语言模型内部机制复杂,难以解释模型决策过程,不利于敏感领域的应用。

🌟3. 局限性 :

  • 理解深度
 -  常识和逻辑推理 :虽然大语言模型在语言生成上表现优异,但在常识推理和复杂逻辑推理上仍存在局限。

 -  多模态理解 :目前大语言模型主要处理文本,难以同时处理多模态数据(如图像、音频、视频)并生成综合内容。
  • 定制化需求
 -  领域专用模型 :通用大语言模型在特定领域可能不如专门训练的领域专用模型,需要进一步微调。

 -  个性化生成 :生成的内容有时缺乏个性化和创意,需要结合人工创作实现更高质量的定制化内容。
  • 长文本生成
 -  上下文一致性 :在生成长文本时,保持上下文一致性和连贯性仍是一个挑战,容易出现前后不一致的问题。

💡9 都体验过市面上哪些大语言模型?异同点是什么?

9.1 该问题面试官的考核点🤔

1. 实际体验 :考察候选人对市面上大语言模型的实际使用经验。

2. 比较分析 :评估候选人对不同大语言模型的优缺点和差异的分析能力。

3. 技术理解 :观察候选人对各模型技术实现和应用场景的理解。

4. 表达和逻辑 :衡量候选人对复杂概念的清晰表达和逻辑组织能力。

9.2 参考答案🤔

🌟1. 体验过的大语言模型 :

  • GPT-3 :广泛应用于文本生成、对话系统、编程辅助等领域,具有极强的语言理解和生成能力。

  • BERT:主要用于自然语言理解任务,如问答、文本分类和命名实体识别,强调上下文理解。

  • T5:将所有NLP任务转化为文本生成任务,具备统一的任务框架和较强的多任务学习能力。

  • XLNet :改进了BERT的双向注意力机制,通过自回归建模提升了语言理解能力。

  • ChatGPT:基于GPT-3.5或GPT-4,专注于对话系统,能够进行自然流畅的对话和问答。

🌟2. 异同点分析 :

  • 模型架构
 -  GPT-3和ChatGPT :基于Transformer架构,采用自回归(Autoregressive)模型,通过预测下一个词生成文本。ChatGPT在对话生成上进行了专门优化。

 -  BERT和T5 :BERT采用双向Transformer架构,通过掩码语言模型(Masked Language Model)进行训练,强调上下文理解。T5采用Encoder-Decoder结构,将所有任务转化为文本生成任务。

 -  XLNet :结合自回归和自编码(Autoencoding)模型的优势,通过排列语言建模(Permutation Language Modeling)提高了文本生成的灵活性和准确性。
  • 训练方式
 -  GPT-3和ChatGPT :使用大规模无监督数据进行预训练,通过预测下一个词进行语言生成。

 -  BERT :通过掩码语言模型训练,预测被掩盖的词,侧重于理解上下文中的每个词。

 -  T5 :将所有NLP任务转化为文本到文本的形式,通过统一的训练框架实现多任务学习。

 -  XLNet :通过排列语言模型训练,结合自回归和自编码模型的优点,提高了上下文理解和生成的灵活性。
  • 应用场景
 -  GPT-3和ChatGPT :适用于多种文本生成任务,如写作辅助、对话生成、编程辅助等。ChatGPT在对话系统中表现尤为出色。

 -  BERT :主要用于自然语言理解任务,如问答系统、文本分类、命名实体识别等。

 -  T5 :适用于多任务学习,能够处理多种NLP任务,如翻译、摘要生成、文本分类等。

 -  XLNet :通过改进的训练方法,适用于需要高精度语言理解和生成的任务。
  • 性能表现
 -  GPT-3 :在生成自然语言文本方面表现出色,文本流畅性和连贯性较强,但计算资源需求较高。

 -  ChatGPT :在对话生成和互动性方面优化显著,能够进行更自然和连贯的对话。

 -  BERT :在自然语言理解任务上表现卓越,尤其在问答和文本分类任务中表现优异。

 -  T5 :在多任务学习中表现良好,能够高效处理不同类型的NLP任务。

 -  XLNet :通过排列语言模型提升了语言生成的灵活性,在多种语言任务上表现优秀。

💡10 你是怎么做微调的?常用的微调方式有哪些?

10.1 该问题面试官的考核点🤔

1. 实际经验 :考察候选人是否有实际进行模型微调的经验。

2. 技术理解 :评估候选人对微调技术和方法的掌握程度。

3. 方法多样性 :观察候选人是否了解不同的微调方法及其适用场景。

4. 表达和逻辑 :衡量候选人对技术概念的清晰表达和逻辑组织能力。

10.2 参考答案🤔

🌟1. 微调的定义 :

微调:是指在预训练模型的基础上,通过在特定任务的数据集上进行进一步训练,以适应具体应用场景的过程。微调可以提高模型在特定任务上的性能,同时减少从零开始训练模型所需的资源和时间。

🌟2. 常用的微调方式 :

  • 全模型微调
 -  方法 :在特定任务的数据集上对预训练模型的所有参数进行训练。

 -  优点 :能够充分利用特定任务的数据,提高模型的适应性和性能。

 -  缺点 :计算资源需求高,可能会导致过拟合。
  • 部分参数微调
 -  方法 :冻结预训练模型的部分参数,仅对部分层(通常是高层)的参数进行训练。

 -  优点 :减少计算资源需求,降低过拟合风险。

 -  缺点 :可能无法充分适应特定任务的数据,性能提升有限。
  • 任务适应微调
 -  方法 :在特定任务的数据集上,对模型进行微调,并根据任务需求添加特定的任务层或头(如分类头、序列标注头等)。

 -  优点 :能够有效适应特定任务,提高任务性能。

 -  缺点 :需要设计适应特定任务的结构,可能增加模型复杂性。
  • 渐进式微调
 -  方法 :分阶段逐步解冻模型的参数,从高层到低层逐步进行微调。

 -  优点 :减少参数剧烈变化,稳定模型训练过程。

 -  缺点 :训练时间较长,需设计合适的训练策略。
  • 混合微调
 -  方法 :结合多种微调方法,根据任务需求和数据特点选择合适的微调策略。

 -  优点 :灵活性高,能够充分利用各种微调方法的优势。

 -  缺点 :需要对任务和数据有深入理解,设计复杂。

🌟3. 微调的具体步骤 :

  • 数据准备 :准备并清洗特定任务的数据集,确保数据质量和格式符合模型要求。

  • 模型加载 :加载预训练模型,根据任务需求选择合适的模型架构和参数。

  • 模型调整 :根据选择的微调方式,调整模型结构(如添加任务特定层、冻结部分参数等)。

  • 训练设置 :设置训练参数(如学习率、批量大小、训练轮数等),选择合适的优化器和损失函数。

  • 模型训练 :在特定任务的数据集上进行训练,监控训练过程中的性能指标,避免过拟合。

  • 模型评估 :在验证集上评估模型性能,调整模型参数和训练策略,确保模型在特定任务上的表现最优。

🌟4. 微调的实际应用 :

  • 文本分类 :在分类任务的数据集上微调预训练模型,如BERT或GPT-3,添加分类头进行文本分类。

  • 命名实体识别(NER) :在NER任务的数据集上微调预训练模型,添加序列标注头进行实体识别。

  • 对话系统 :在对话数据集上微调预训练对话模型(如ChatGPT),提高对话的连贯性和上下文理解能力。

💡11 对于机器人出现的幻觉问题你们是怎么避免的?

11.1 该问题面试官的考核点🤔

1. 问题理解 :考察候选人对大模型幻觉问题的理解。

2. 解决方案 :评估候选人对幻觉问题的解决方案的合理性和可行性。

3. 技术应用 :观察候选人是否能结合实际应用场景提出有效的解决方案。

4. 表达和逻辑 :衡量候选人对复杂技术问题的清晰表达和逻辑组织能力。

11.2 参考答案🤔

🌟1. 大模型幻觉问题的定义 :

幻觉 :指的是大模型在生成内容时,生成了不真实或不符合上下文的信息。这种问题在文本生成和对话系统中尤为常见,可能导致生成的文本包含虚假、误导或无关的信息。

🌟2. 幻觉问题的原因 :

  • 数据质量问题 :训练数据集中的错误信息或噪音数据可能导致模型生成不准确的内容。

  • 模型过度拟合 :模型在训练过程中过度拟合训练数据中的噪音或不准确信息,导致在生成过程中出现幻觉。

  • 缺乏知识约束 :大模型在生成内容时缺乏外部知识库或逻辑约束,导致生成的内容不符合事实或逻辑。

🌟3. 解决方案 :

  • 数据清洗和增强
 -  高质量数据集 :确保训练数据集的高质量,清洗和过滤掉错误信息和噪音数据。

 -  数据增强 :通过数据增强技术生成更多的高质量训练数据,增加模型的鲁棒性。
  • 引入知识约束
 -  知识库集成 :将外部知识库与大模型集成,在生成内容时引用真实、可靠的知识,提高生成内容的准确性。

 -  基于规则的约束 :在模型生成过程中引入基于规则的约束机制,确保生成内容符合逻辑和事实。
  • 模型架构改进
 -  增强记忆机制 :在模型中引入记忆机制,记录和检索上下文相关的信息,减少幻觉的发生。

 -  多模态模型 :结合多模态数据(如文本、图像、音频)进行训练,提高模型的综合理解能力,减少幻觉。
  • 训练策略优化
 -  对抗训练 :通过对抗训练技术生成对抗样本,训练模型识别和避免生成幻觉内容。

 -  迭代微调 :通过迭代微调技术,不断优化模型在特定任务和数据集上的表现,减少幻觉问题。
  • 模型输出验证
 -  人类审核 :在关键任务和重要应用场景中,增加人类审核环节,确保生成内容的准确性和可靠性。

 -  自动化验证 :开发自动化验证工具,对模型生成的内容进行事实检查和逻辑验证,检测和纠正幻觉内容。

🌟4. 实际应用 :

  • 文本生成 :在新闻自动生成和技术文档撰写中,引入知识库和规则约束,确保生成内容的准确性。

  • 对话系统 :在智能客服和虚拟助手中,集成知识库和记忆机制,提高对话的连贯性和准确性。

  • 医学和法律等敏感领域 :在这些领域应用大模型时,必须严格进行人类审核和自动化验证,确保生成内容的可靠性和合法性。

💡12 你了解哪些作图的模型?自己训练过Lora吗?

12.1 该问题面试官的考核点🤔

1. 技术认知 :考察候选人对作图模型的了解程度。

2. 实际经验 :评估候选人是否有训练过作图模型的实际经验,特别是Lora模型。

3. 技术应用 :观察候选人对作图模型在实际应用中的使用和优化能力。

4. 表达和逻辑 :衡量候选人对技术问题的清晰表达和逻辑组织能力。

12.2 参考答案🤔

🌟1. 了解的作图模型 :

  • GAN(生成对抗网络) :

    • 定义 :GAN由生成器和判别器组成,通过两者的对抗训练生成逼真的图像。

    • 代表模型 :DCGAN、StyleGAN、CycleGAN。

- VAE(变分自编码器) :

 -  定义 :VAE通过学习数据的概率分布生成新图像,能够实现图像的平滑过渡。

 -  应用场景 :图像生成、图像重建、异常检测。

- DALL-E :

 -  定义 :DALL-E是一种基于Transformer的模型,能够根据文本描述生成图像。

 -  应用场景 :文本到图像生成、广告设计、艺术创作。

- Stable Diffusion :

 -  定义 :一种基于扩散模型的图像生成方法,通过逐步去噪生成高质量图像。

 -  应用场景 :高分辨率图像生成、艺术创作、图像修复。

- Lora :

 -  定义 :Lora是通过低秩矩阵分解对模型进行微调的技术,常用于提升图像生成模型的性能。

 -  应用场景 :特定风格图像生成、领域适应、模型压缩。

🌟2. 自己训练过Lora :

- 训练Lora的经历 :

  • 数据准备 :收集并准备了一个特定领域的数据集,进行了数据清洗和预处理。

    • 模型选择 :基于预训练的图像生成模型,如StyleGAN或Stable Diffusion,进行Lora微调。

    - 训练过程 :

  • 模型初始化 :加载预训练模型,并根据Lora技术的要求进行模型结构调整。

  • 低秩分解 :应用低秩矩阵分解技术,对模型参数进行低秩近似,减少参数量并提高计算效率。

  • 微调训练 :在特定数据集上进行微调训练,调整模型参数使其适应新的数据分布和生成任务。

    - 评估与优化 :

  • 性能评估 :通过生成图像的质量和多样性进行评估,使用指标如FID(Fréchet Inception Distance)和IS(Inception Score)。

  • 超参数调整 :根据评估结果调整训练超参数,如学习率、批量大小、训练轮数等,优化模型性能。

    - 应用场景 :

使用微调后的Lora模型进行特定风格图像生成、领域适应和模型压缩,提升了生成图像的质量和多样性。

👉获取方式:

😝文章篇幅有限,详细资料有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值