【RAG入门系列】⼀⽂读懂 RAG 技术:给⼤模型外挂“知识库”

你有没有想过,为什么现在的AI能回答那么多问题?是不是它真的“无所不知”? 其实不然。虽然大语言模型(LLM)已经非常强大,但它也有“盲区”⸺比如知识更新不及时、容易编造答案等。

那怎么办呢?别急,今天我们要介绍⼀个强大的技术⸺检索增强生成(RAG),它就像给AI装了⼀个“图书馆”,让它在回答问题前先查资料,确保答案准确可靠!

1、什么是RAG?

想象⼀下,你是⼀个学生,老师问你⼀个问题:“爱因斯坦什么时候获得诺贝尔奖?” 你是直接凭记忆回答,还是去查⼀下百科全书? RAG就是那个“查资料”的过程 。它的工作流程可以分为两步:

  • 检索(Retrieval): 从外部知识库中找到与问题相关的信息;
  • 生成(Generation): 基于检索到的信息,由大语言模型生成准确的回答。

✅ ⼀句话总结: RAG = 检索 + 大模型生成

2、RAG的核心组件有哪些?

RAG不是单⼀技术,而是⼀套完整的系统。它的核心组件如下图所示:

img

🔍 查询(Query)

用户提出的问题,是整个RAG系统的起点。

📥 文档加载器(Document Loaders)

从各种数据源(如PDF、网页、数据库)中提取内容,准备用于后续处理。

📄 文本分块(Chunking)

将长本拆分成小段,便于向量化和检索。常见的方法有:

  • 基于字符的分块

  • 递归分块(RecursiveCharacterTextSplitter)

  • 基于Embedding的智能分块

🧠 向量嵌入(Embedding)

将⽂本转换为向量表示,方便进行语义相似度匹配。常用模型有:

  • BERT

  • E5

  • BGE

💾****向量存储(VectorStore)

存储向量化后的⽂档片段,支持快速检索。常见工具包括:

  • FAISS

  • Milvus

  • Pinecone

  • Chroma

🔎检索器(Retriever)

根据用户查询,在向量库中找到最相关的文档片段。常用的检索方式有:

  • Top-K 相似度检索

  • 最⼤边际相关性(MMR)

  • BM25 关键词检索

  • 混合检索(RRF排序融合)

📍上下文压缩与重排(Reranking)

对初步检索结果进行优化,提升准确率。例如使用交叉编码器或Cohere API进行重排序。

👨‍💻大语言模型(LLM)

最终由LLM结合上下文信息生成自然流畅的回答。

3、RAG的优势与应用场景

核心优势

img

🌐 应用场景

  • 企业问答系统 :客服机器⼈、FAQ助手

  • 医疗咨询 :辅助医⽣诊断、药物推荐

  • 法律助手 :合同审查、案例检索

  • 金融风控 :风险评估、合规检查

  • 教育辅导 :个性化学习路径推荐

4、RAG vs 长上下文模型:谁更强?

最近,大模型都⽀持百万级 token 的上下⽂窗⼝,很多⼈开始质疑:RAG还有必要吗? 答案是:当然有!

虽然长上下文模型能记住更多信息,但它们依然存在以下问题:

  • 知识更新慢 :训练数据截止⽇期后的新信息⽆法覆盖;

  • 成本高:处理超长文本需要更多计算资源;

  • 易幻觉 :没有引用来源,容易编造事实。

而RAG正好弥补了这些缺陷:

  • 它可以接⼊最新的内部数据;

  • ⽀持动态更新;

  • 通过引用原⽂,提高可信度。

📌 结论:RAG不会消失,而是与长上下⽂模型形成互补关系

未来展望:RAG会走向何方?

随着⼤模型的发展,RAG也在不断进化:

  • 更智能的查询理解与转换

  • 多模态RAG(⽀持图片、音频、视频)

  • 与智能体(Agent)结合,实现⾃动化决策

  • 微调检索器与⽣成器,进⼀步提升性能

未来的AI系统,将是RAG + Agent + 长上下文模型三位⼀体的架构! RAG不仅是⼀项技术,更是⼀种思维方式⸺让AI学会查资料、讲依据、说真话 。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值