2025年大模型架构创新研究报告|附30页PDF文件下载

量子位智库权威报告揭示AI架构变革浪潮,2025年6月,中国领先的人工智能研究机构量子位智库(QbitAI Insights)发布了《2025大模型架构创新研究报告》,这份30页的重磅报告由资深分析师王昕祎领衔,系统梳理了当前AI领域最前沿的架构创新趋势。报告指出,自2017年Transformer架构问世以来,AI行业首次面临全面的架构范式革新,这场变革将决定未来5-10年人工智能技术的发展方向。

报告基于对全球顶尖实验室和科技公司的跟踪研究,揭示了Transformer架构的局限性日益凸显背景下,行业如何通过两条并行技术路径寻求突破:一是对Transformer的渐进式改良,二是彻底颠覆性的非Transformer架构探索。随着2025年多家企业实现非Transformer架构的工业级落地,AI技术发展正式进入"后Transformer时代"。以下四大核心趋势重塑AI架构未来:

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### 如何搭建 DeepSeek 论文框架 #### 选择合适的研究主题和发展方向 为了构建一个类似于 DeepSeek 的论文框架,首先要明确研究的主题和技术发展方向。从已有的技术报告来看,DeepSeek 在2024-2025期间展示了几个重要的技术研发路径[^2]。这些路径不仅限于语言模型本身的改进,还包括了混合专家系统的探索以及通过强化学习提升模型推理能力等方面。 #### 构建多阶段训练框架 基于已有资料中的描述,在设计具体的实验方案时可以采用一个多阶段的训练流程来提高最终成果的质量和适用性。具体来说,这个过程可能涉及冷启动数据注入、两阶段的强化学习调整以及特定类型的自我监督微调等环节[^3]。这样的架构有助于解决初始阶段的数据不足问题,并逐步使模型适应更复杂的任务需求。 #### 自动化文献处理工具的应用 对于希望深入理解该领域最新进展并找到潜在创新点的研究者而言,利用自动化工具来进行大量学术资源的管理和分析是非常有帮助的。例如,可以通过上传多个版本的相关PDF文件到专门开发的信息抽取平台上来实现这一点;此类系统能够自动生成详细的比较表格,从而加速识别不同研究所存在的差异之处及其背后的方法学原理[^4]。 #### 数学符号与公式的定义说明 当撰写关于算法优化部分的内容时,清晰地界定所使用的各种变量含义至关重要。比如,在讨论PPO(Proximal Policy Optimization)这类高级机器学习算法的时候,就需要对诸如策略更新过程中涉及到的关键参数做出精确表述,像每组采样的输出数量\(G\)、当前及旧版策略\(\pi_\theta,\pi_{\theta_{old}}\)、优势函数\(A_i\)、剪切范围超参\(\varepsilon\)、KL散度惩罚系数\(\beta\)等等[^5]。 ```python import numpy as np def calculate_kl_divergence(p, q): """Calculate the Kullback-Leibler divergence D(P || Q).""" p = np.asarray(p, dtype=np.float) q = np.asarray(q, dtype=np.float) return np.sum(np.where(p != 0, p * np.log(p / q), 0)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值