关于智能体开发范式之——ReAct(Reasoning and Acting)到底是什么?

目前基于大模型构建上层应用,其中很大的一个问题就是大模型的能力不足,特别是在复杂场景下的逻辑思维能力,明显存在严重的缺陷;而且由于安全性问题,大模型整体运行过程是一个黑盒模型,我们并不知道其内部到底是怎么运作的。

因此,这时就需要一种方式让大模型给出具体的思考和行动过程,一是为了弄明白大模型是怎么思考的,二是为了让大模型能够处理更复杂的逻辑问题。

img

Reasoning And Acting思考和行动

人工智能技术的发展是为了让机器取代人类,使人类从繁重的生产任务中脱离出来;因此人工智能技术不仅仅只是用来生成一些文字,图片;最重要的是让大模型真的能够像人类一样干活,使用各种工具去处理各种复杂的事情。

但大模型是一个没有物理实体的程序,怎么才能让大模型去接触现实世界呢?

因此这时Agent智能体就产生了,智能体的作用就是让大模型能够使用外部工具和现实世界进行接触,而这也是为什么说Agent智能体是通往通用人工智能(AGI)的桥梁。

虽然说目前大模型可以通过Function call和MCP等方式来使用外部工具;但有一个问题就是,大模型在处理复杂问题时能力有限,因为它无法做到像人类一样,把一个复杂的任务通过拆分形成多个简单的子任务。

img

所以,这时就需要一种方式来让大模型像人类一样进行思考和行动,而这时就有人提出了一个方法论——Reasoning And Acting思考和行动;简称——ReAct。

可能很多人都听说过这个词,但我相信很多人八成都没弄明白这个词到底是怎么回事;虽然有文档解释ReAct的理念,但我想很多人应该都看不明白,包括作者自己。

在前面的文章中提过,大模型应用的核心就是把大模型当做一个人,而不是一个无所不能的神;而不同的大模型就类似于不同的人,有些擅长创作类,比如AIGC,有些擅长逻辑推理比如说GPT4和DeepSeek-R1等。

因此,把大模型类比于人类,就可以更好地理解大模型应用的本质;那么人类在面对复杂问题时都是怎么处理的?

首先,就是要分析问题,然后拆解问题,最后一步一步的解决问题,而且在解决问题的过程中还要不断的思考,总结和调整方向和策略。

因此,仿造人类解决复杂问题的过程,就提出了大模型的ReAct范式;其原理就类似于人类解决复杂问题的过程。

ReAct范式主要包括以下几个方面,以提示词模板为例:

Question: 用户问题

thought: 大模型思考过程

action: 调用工具执行

observation: 观察总结

final answer: 最终答案

这玩意看起来好像很好理解,但实际用的时候发现好像又没那么简单;原因就在于我们没搞明白大模型为什么会按照这种要求去做。

其实,我们换个角度就很好理解这个问题了;这玩意就类似于一个模板,比如我写文章,写论文需要有一些模板格式;而这就相当于我们的论文模板,只不过这个模板是思考和行动的过程。

这就类似于,领导给下属分配一个任务,让下属去处理;但由于这个下属能力不足,害怕出错,所以领导就交给他一个方法论,把问题,思考过程,行动过程,以及总结的过程都按照以上方式记录下来,这样就能避免主观犯错。

OK,这里弄明白了ReAct模式的提示词方式,那ReAct应用于Agent智能体的开发应该怎么办呢?

毕竟智能体是LLM+Prompt+Tools的集合,怎么才能让智能体按照这种思考方式来处理问题呢?并且,当其中某个环节执行失败时,智能体能够及时总结和调整找到其它的解决方案。

并且智能体还需要在失败和用户反馈中,不断的优化其执行方案和结果;那ReAct智能体的执行过程是什么样的?

img

根据提示词的这个过程,大模型在接受到用户请求(question)之后(也就是提示词,提示词中包括用户的问题,以及一些条件和约束等);大模型拿到问题之后,就会进行思考分析(thought),然后根据思考结果判断是依靠自身能力解决,还是需要调用外部工具解决,这一步就是行动(action)。

而大模型在思考完成并调用工具行动之后,会拿到一个结果;但这个结果可能并不是对的,或者只是中间某一步的结果;因此,大模型还需要观察(observation)工具执行的结果,是否拿到正确结果,也就是是否符合用户的问题,以及执行过程中是否出现错误或异常等。

Question: 用户问题

thought: 大模型思考过程

action: 调用工具执行

observation: 观察总结

final answer: 最终答案

当,工具执行出现异常或没有拿到正确结果之前,智能体需要自己能够解决问题找到新的解决方案,或者是继续之后后面的步骤,拿到最终的结果(final answer)。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值