在当今科技浪潮中,AI 技术宛如汹涌的海浪,席卷了各个行业,AI 产品经理这一岗位也随之成为了众多求职者眼中的香饽饽。许多怀揣梦想的普通人,渴望投身于这个充满机遇与挑战的领域,实现职业转型。然而,转型之路并非一帆风顺,充满了荆棘与迷雾。今天,我们有幸邀请到一位大厂资深 PM,为我们拆解普通人转型 AI 产品经理的 3 个关键要点,为迷茫中的人们照亮前行的道路。
一、要点一:明确转型目标
AI 产品经理细分下来主要有三类:模型层 AI 产品经理、平台层 AI 产品经理以及应用层 AI 产品经理。对于普通人而言,前两者通常对技术背景有着较高的要求。模型层 AI 产品经理需要具备深厚的算法理解能力、数据治理能力以及技术可行性评估能力,一般更适合高学历且拥有高技术(如算法、人工智能等)背景的人才。平台层 AI 产品经理则需具备系统架构设计能力、资源调度优化能力以及开发者生态建设能力,往往青睐有技术背景的产品经理人才。
而应用层 AI 产品经理主要负责实现 AI 的商业化落地,重点聚焦于用户体验与业务价值转化,需要具备行业场景洞察能力、需求拆解能力以及商业化运营能力。目前企业大量招聘的 AI 产品经理多指这一类,对于没有顶尖学历和深厚技术背景,但拥有丰富行业经验的传统产品经理或其他从业者来说,从应用层 AI 产品经理入手实现转型是一个明智的选择。确定这一转型目标,就如同在航海中找准了方向,后续的努力才不会偏离航道。
二、要点二:针对性提升能力
明确了转型目标后,接下来便是针对性地提升自身能力。应用层 AI 产品经理核心聚焦在算法的应用场景以及技术的能力边界。虽然不需要像技术人员那样深耕算法细节,但需要了解大模型框架原理,以便更好地将 AI 技术与实际业务场景相结合。
行业场景洞察能力
深入了解不同行业的痛点和需求是关键。以医疗行业为例,患者排队时间长、医疗资源分配不均等问题长期存在。AI 产品经理需要思考如何利用 AI 技术,如通过智能分诊系统优化患者就诊流程,或者利用 AI 影像诊断技术提高疾病诊断的准确性和效率。只有对行业场景有敏锐的洞察力,才能发现那些隐藏在表象之下的可利用 AI 技术解决的问题。
需求拆解能力
当发现行业痛点后,要能够将复杂的业务需求拆解为具体的、可实现的产品功能需求。比如在电商领域,为了提升用户购物体验,想要实现个性化推荐功能。AI 产品经理就需要将这个大需求拆解为如何收集用户行为数据、如何选择合适的推荐算法、如何展示推荐结果等一系列详细的子需求,确保技术团队能够清晰理解并进行开发。
商业化运营能力
AI 产品最终要实现商业价值,这就要求产品经理具备商业化运营能力。一方面要制定合理的商业策略,例如是采用订阅制收费、按使用量收费还是其他模式;另一方面要关注产品的市场推广和用户增长,通过有效的运营手段,让更多的目标用户了解并使用产品,从而实现产品的盈利。
三、要点三:积累项目经验
在 AI 产品经理的求职过程中,项目经验是一块极具分量的敲门砖。没有 AI 项目经历,在简历筛选阶段就很容易被淘汰。那么如何积累项目经验呢?
参与实际项目
如果所在公司有 AI 相关项目,主动申请参与其中,哪怕只是承担一些辅助性工作,也能深入了解 AI 项目从需求分析、设计、开发到上线运营的全流程。若公司内部没有此类项目,可以利用业余时间参与一些开源的 AI 项目,在实践中锻炼自己的能力,同时将这些项目经验整理到自己的简历中。
打造个人项目
自己构思并打造一些小型的 AI 应用项目。比如利用现有的 AI 工具和平台,开发一个简单的智能客服机器人,应用于某个特定的业务场景,像小型电商店铺的售后咨询。在这个过程中,全面实践自己所学的 AI 产品知识,从产品定位、功能设计到最终实现,形成一个完整的项目闭环。将这样的个人项目展示在简历和面试中,能够有力地证明自己具备将 AI 技术应用于实际业务的能力。
四、大厂AI产品经理
1、真正做了AI产品,我是怎么理解AI产品经理的!
当下大中小厂都在卷AI ,且急需Ai方向的产品人才。老师主导公司AI产品落地过程中也对这个岗位有了一个更深度的了解,这个部分老师会带你详细理解真正的AI产品经理岗位只能和关键流程是怎样的?
2、以客服场景为例,看AI产品经理的角色定位
其次,老师会分享AI+产品的具体案例,手把手带大家梳理AI落地的关键流程和产品在过程中的业务思考。并分享产品经理在AI时代的具体成长路径。
3、如何转型AI产品经理?
同时,老师会基于他目前在做的AI产品经理项目,分享当下AI产品经理角色定位,以及如何构建适应时代发展的产品能力模型,并帮助大家制定适合自己的产品能力提升计划,实现自我的提升。
五、适合人群
- 毕业后想入行的学生:没经验,没作品,缺少核心竞争力;想学习,但不清楚学习方向和重点
- 准备回国发展的留学生:不了解国内市场环境和用人需求;缺少匹配国内市场的项目精力和作品
- 想转行的传统岗位人群:不熟悉互联网行业标准,无法入行;缺乏专业的知识体系和项目经历,求职缺少亮点
- 专业基础薄弱的职场小白:岗位基础薄弱,成长缓慢,没人指导;缺少话语权,工作被动,被领导和同事牵着走
- 有一定经验的在职提升人群:缺乏系统梳理,无法举一反三、灵活应变;希望提升产品专业能力,实现升职加薪
- 想转岗的互联网从业者:在原岗位发展受限,寻求破局与机会;想学习产品专业知识和技能,突破发展瓶颈
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!