在人工智能技术飞速发展的今天,AI 产品已从实验室走向大众生活,小到智能推荐算法,大到自动驾驶系统,背后都离不开 AI 产品经理的统筹规划。与传统产品经理相比,AI 产品经理不仅需要洞察用户需求,更要理解技术边界,在数据、算法与商业价值之间找到平衡。下面,我们将拆解从 0 到 1 打造 AI 产品的全流程,为 AI 产品经理提供一份实战指南。
一、AI公司类型
1、AI公司
为纯粹的做AI的公司,如,OpenAI人工智能研究公司开发了GPT系列模型、月之暗面专注于大模型并于2023年推出了Kimi chat。其AI产品经理主要为基栈型,主要为架构师、算法工程师、编码工程师转变而来。
2、AI+公司
(1)toB型:该类型公司主要为各个行业赋能,探索更多的AI+行业解决方案,如,“AI+交通”高德地图引入智能语音辅助车主导航、“AI+教育”科大讯飞基于本身的语音识别AI技术研发出阿尔法蛋。其AI产品经理为行业型产品经理。
(2)toC型:该类型公司主要面向消费者市场,开发更多的C端应用型产品,如,“AI+办公”WPS上线AI PPT服务。其AI产品经理为行业型产品经理。
3、+AI公司
(1)软件型:主要为传统的SaaS化公司,如,“设计+AI”公司美图秀秀上线AI抠图功能;其AI产品经理为软件型产品经理。
(2)软硬结合型:主要为传统行业产品AI化,如,“小米+AI”基于各种家居设备引入AI技术、“比亚迪+AI”引入智能驾驶技术;其AI产品经理为软硬结合型产品经理。
一句话总结:
AI公司主要包括:AI公司、AI+公司、+AI公司,AI公司为单纯的做AI算法的公司、AI+公司为“带着AI算法去做产品”的公司、+AI公司为“基于自身产品叠加AI”的公司;
二、如何从0开始做一款AI产品
1、从0开始做+AI产品的完整工作方法
1.1 项目启动阶段
核心目标:确保人、财、物等关键资源就绪,为项目奠定基础。
(1)人力资源配置
- 评估团队角色完整性:需配备算法开发、数据分析、DMP 平台搭建及 AI 技术专家等核心岗位人员,确保各环节技术落地能力。
(2)财务预算规划
- 评估资金储备是否匹配项目周期及规模,重点保障数据采集、模型训练、平台开发、测试验证等关键环节的持续投入,避免因资金短缺导致项目中断。
(3)技术资源储备
- 盘点团队现有 AI 技术资产,如算力资源(GPU / 云服务器)、自然语言处理(NLP)、机器学习框架(TensorFlow/PyTorch)、数据标注工具等,确保满足建模与平台搭建需求。
1.2 项目实施阶段
核心路径:以数据驱动技术落地,分阶段完成建模与平台构建。
(1)样本测试模型
- 基于业务场景(如医药广告投放、医疗咨询匹配、医生信息分析等),选取高质量样本数据进行预处理(清洗、脱敏、特征工程),通过交叉验证等方法测试模型性能,优化算法参数。
(2)构建推荐引擎
- 设计分层推荐策略(如协同过滤、内容推荐、深度学习推荐),结合用户画像( demographics、行为数据)与业务目标(转化率、点击率)开发推荐引擎。
(3)构建DMP
- 搭建全链路 DMP 平台,实现数据采集(多源数据接入)、存储(分布式数据库)、分析(标签体系构建)、应用(精准营销触达)的闭环管理,确保数据流通的安全性与合规性(如符合 GDPR/《个人信息保护法》)。
1.3 项目上线阶段
核心策略:分阶段放量上线验证,控制风险并优化用户体验。
(1)AB 测试与灰度发布
- 先进行小范围 AB 测试,对比不同策略(如推荐算法版本、界面交互设计)的效果,选定最优方案后,采用灰度发布模式逐步扩大用户覆盖范围:
- 第一阶段:2% 用户试点,监测系统稳定性与用户反馈;
- 第二阶段:提升至 5% 用户,验证推荐精准度与业务指标;
- 第三阶段:扩大至 10% 用户,全面验证平台承载能力与数据安全性;
(2)风险管控与迭代优化
- 建立实时监控体系(如系统性能指标、用户行为数据、业务异常预警),一旦发现数据偏差或技术故障,立即回滚至稳定版本,并启动问题溯源与修复流程。
- 基于用户反馈与测试数据,持续优化推荐模型与平台功能,确保正式上线后实现预期业务目标,降低大规模上线带来的潜在损失。
2、项目启动阶段
2.1 人力资源配置
- 了解AI团队人员角色配置地完整性,包括:算法工程师、数据库工程师、ETL工程师、AI产品经理、AI产品经理等,确保人力结构和需求相匹配,可满足各个环节的落地;如,团队内无算法工程师,可以通过直接外部招聘,或者培养内部其他角色成员。
2.2 财务预算规划
- 评估完成AI系统所需要的预算和时间,通常而言,可基于当前人力和财力的情况对其进行量化。
- (1)项目数据准备的成熟度:所需要的原始数据是否都已经准备好,是从0开始,还是已有数据仓库,是否需要爬虫获取;
- (2)人员到位情况:现在人力资源配置是否齐全,如若不完整,需要多长时间人员才可到位;
- (3)对AI+系统的预期:如在当前的人力、财力情况下,在第一阶段内,系统可以做到可用,在第二阶段内,系统可以做到好用;
2.3 技术资源配置
- 评估所需要的AI技术,如NER命名实体识别可以识别药厂的名称,NLP自然语言处理和NLU自然语言理解可以理解药物的特性、关联规则可以根据医生以前看的内容推荐相关资讯。
3、项目实施阶段
3.1 样本测试模型、构建推荐引擎
明确核心人员和参与了解人员,如,核心人员包括算法工程师、数据库工程师,参与了解人员包括ETL工程师;
需要把握需求定义,如,需要某数据,产品经理需要搞定数据来源,如果现有数据不准,是否需要进一步爬虫;
知道算法边界,如,知道哪些可以做,哪些不可以做;如做医药的词典,如果算法不可以做,则需要人工搭建运营平台,需要准备后续的运营和维护的工作;
推进数据库和算法的新增和完善,如,一开始搭建的数据仓库,可能存在用户画像不完整的问题,需要逐步完善,以达到后续机器自动执行的目的。
3.2 构建DMP(数据管理平台)
核心把握:数据源
1、调研业务、调研数据源,成为公司/行业的业务专家。如,调研外部数据源有哪些,用户用的都是什么系统?
2、产品经理或数据仓库核心驱动:数据仓库+数据库工程师构建数据平台。产品经理需要了解每个人员角色的分工,特别是数据仓库和数据库工程师,从而进一步引导其相关工作;
3、定义清楚每个数据代表的意思,清楚哪些数据源是自己的,哪些是外部的?确保数据的有效性和可信度;
易踩坑点!数据源不稳定
(1)外部数据用爬虫技术,但容易被封,如,一些网站也有反爬虫机制;这就要求产品经理找到的数据源有较强的稳定性,并且尽量数据来源多样化。
(2)自己业务不稳定,业务不做了或者合作停了;这要求产品经理,需要有持续的场景创新能力,以确保团队持续不断的产出。
4 项目上线
4.1 上线前:AB测试和放量上线
(1)AB测试
AB测试为可选测试,可根据产品使用情况按需开展。如用户量较少,并且不会影响生产作业,通常可以不进行AB测试,如用户量较大,已经有达到上万数量级,则建议开展AB测试。
AB测试如若不做,存在风险包括:会有较大bug未得到及时修复,影响用户使用;难以判断新功能用户是否接受。可以根据业务类型、或者区域/IP选择客户,从而开展AB测试;
(2)放量上线
产品经理整体协同主导,概述具体事项,发送上线邮件;在此过程中,需要把握核心部门手机号码,遇到问题第一时间找到关键人;
4.2 上线后:产品运营
- 根据运营反馈、客户反馈,逐步迭代优化算法;
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!