引言
想象一下,你有一个巨大的图书馆,里面存放着各种各样的书籍。传统的关系数据库就像是一个按照书名、作者、出版日期等信息整齐排列的书架。你可以通过这些信息快速找到你想要的书籍。
但是,如果你想要找到“和《哈利·波特》风格相似的书”,传统的方法就显得力不从心了。这时,向量数据库就像是图书馆里的一个智能助手,它不仅能根据书名、作者等信息帮你找书,还能根据书籍的内容、风格等深层次的特征,帮你找到“感觉相似”的书。
1、什么是向量数据库
向量数据库是一种专门用于存储和查询向量数据的数据库。向量数据可以理解为一种数学上的表示方式,用来描述复杂的数据特征。比如,一张图片可以被表示为一个高维向量,一段文本也可以被表示为一个高维向量。
你可以把向量数据库想象成一个“特征仓库”。它存储的不是原始数据(如图片、文本),而是这些数据的“特征向量”。
这些特征向量是通过机器学习模型从原始数据中提取出来的,能够捕捉到数据的深层次特征。向量数据可以基于相似性搜索进行识别,而不是精确匹配,使计算模型能够在上下文中理解数据。
2、向量的定义
在数学中,向量是一个有方向和大小的量。它可以表示为一个有序的数字列表,每个数字代表一个维度上的值。比如,一个二维向量可以表示为 [x, y],一个三维向量可以表示为 [x, y, z]。
通俗的讲吧,你可以把向量想象成一个“特征列表”。每个数字代表某个特征的值。比如,描述一部电影的向量可能是 [紧张程度, 演员表现, 视觉效果],每个特征都有一个具体的数值。
在现代人工智能和大数据应用中,向量不仅仅是一个数学概念,它已经成为了数据表示和检索的核心工具。特别是在大模型中,向量扮演着至关重要的角色。那么,大模型是如何通过向量来检索内容的呢?让我们一起来探索这个过程。
3、向量检索的过程
1:向量化
大模型通过将文本转换为高维向量来表示文本的语义信息。这个过程称为“文本向量化”或“文本嵌入”。每个单词、句子或段落都被转换为一个固定长度的向量,这些向量捕捉了文本的语义和上下文信息。
我们给大家举一个例子来说明下如何检索的。首先,所有的书籍(或内容)都被转换为向量。这个过程就像是为每本书创建一个“特征指纹”,这个指纹捕捉了书的核心特征。
2:索引
为了快速找到相似的书,这些向量会被索引。索引的过程就像是把所有的书按照它们的特征指纹分类存放,方便快速查找。
3:查询
当你输入一个查询(比如“和《哈利·波特》风格相似的书”),这个查询也会被转换为一个向量。系统会计算这个查询向量与数据库中所有向量的相似度。
4:相似度计算
系统会使用一些数学方法(如余弦相似度、欧氏距离)来计算查询向量与每个书籍向量的相似度。相似度越高,表示这本书与查询越相似。
5:返回结果
系统会返回与查询向量最相似的几本书。这些书就是你要找的“和《哈利·波特》风格相似的书”。
4、向量检索的优势
向量检索作为一种现代数据检索技术,在处理复杂、非结构化数据时展现出了显著的优势。我们来看看实际应用中的具体体现:
高效处理高维数据,适应复杂的数据形式。 向量检索专门为高维数据设计,能够高效存储和查询这些复杂的数据形式。例如,一张图片可以被表示为一个512维的向量,向量检索可以快速找到与之相似的图片。当面对高维数据(如图片、音频、文本嵌入向量)时,传统方法效率低下,甚至无法处理。
支持语义搜索,理解查询的深层含义。 向量检索通过捕捉数据的语义信息,能够理解查询的深层含义。例如,搜索“苹果”时,系统可以根据上下文区分是水果还是科技公司。
实时相似度搜索,满足现代应用的实时性需求。 向量检索支持实时相似度搜索,能够在毫秒级别内找到与查询向量最相似的结果。
强大的扩展性,轻松应对大规模数据。 向量检索通常采用分布式架构,能够轻松扩展到大规模数据集。Milvus等向量数据库可以支持数十亿条向量的高效检索。
多模态数据处理,统一处理多种数据类型。 向量检索可以统一处理多种数据类型。
通过向量检索,我们能够更高效、更智能地处理和分析数据,为人工智能和大数据应用提供了强大的工具和方法。而且现在向量数据库真是百花齐放啊,后面可以给大家在进行介绍。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!