本文从老程序员和转行者的角度,解析大模型入门的四大方向(数据、平台、应用、部署),指出新人易犯三大误区,并针对不同背景学习者提供针对性建议。文章强调大模型学习应注重实战能力与工程落地,提出分阶段学习路径:认知期、实战积累期和项目打磨期。作者指出,当前大模型领域需要的是能搭建可运行系统的实战人才,而非仅关注算法调参,帮助读者系统掌握技术栈,避免盲目学习和踩坑。
这两年,大模型从实验室里的高冷研究,走到每个程序员、学生、转行者的聊天框和职业规划表里。
几乎每天都有人来问我:
- “师兄,我是做后端的,能不能转大模型?”
- “我在看一些课程,不知道该学哪些才有用?”
- “我试着搭了个模型,发现全是坑,是不是我不适合?”
今天这篇文章,我不打算讲那些泛泛而谈的大模型原理,我就站在一个“老转行人 + 老程序员 + 老训练营主理人”的角度,跟你聊聊:
大模型怎么转?适合哪些人?哪些方向对新手友好?又有哪些坑你必须避开?
文章有点长,但全是我这几年观察下来最真实的经验,如果你真的想搞懂大模型、入场不踩坑,建议认真读完,或先收藏慢慢看。
一、大模型≠ChatGPT,先搞清“全景图”再出发
说句真话,很多人对“大模型”的第一印象就是——ChatGPT。
但这只是它的"最上层",底下的基建、平台、算法、数据处理、推理部署……才是撑起整个技术栈的骨架。
入行大模型的4大方向
根据我帮学员投简历、对接企业需求的经验,大模型相关岗位基本可以分为这四类:
类型 | 岗位关键词 | 适合人群 |
---|---|---|
1. 数据方向 | 数据构建、预处理、标注、数据质量评估 | 适合零基础/转行者,入门门槛低,上手快 |
2. 平台方向 | 分布式训练、资源调度、模型流水线 | 适合工程背景(后端/DevOps/大数据) |
3. 应用方向 | LLM算法、RAG、AIGC、对话系统 | 适合有转行 |
4. 部署方向 | 模型压缩、推理加速、端侧部署 | 系统能力强、做过底层开发的人更有优势 |
为什么要先讲这个?
因为我见太多人一上来就“我要搞算法”、“我想调模型”,结果发现自己根本没有训练数据、搞不清pipeline、代码跑不起来,最后就放弃了。
这不是你不行,而是选错了切入角度。
二、新人最容易犯的3个典型误区
误区1:只想搞模型,根本没想清要解决什么问题
很多新手“理想中的工作”是:
- 在大厂模型组里调ChatGPT
- 每天改超参、训练、测试效果
但真实情况是:
- 真正“调模型”的人不到团队的5%
- 大部分新人做的都是“链路搭建 + 数据清洗 + demo验证”
建议你:把目标从“调模型”转成“做出能跑起来的模型服务”,哪怕是个对话demo,也比纸上谈兵有用得多。
误区2:盲目学习所有热门词,却没搞懂底层逻辑
LoRA、SFT、RLHF、vLLM、QLoRA……
很多人听到这些名词眼睛一亮,像打卡一样都想学一遍,但最后变成“啥都看过,啥都不会”。
其实大模型的学习应该是“问题驱动”,你要围绕业务问题,反推需要哪些技术。
举个例子:你要做一个知识问答机器人,那你至少得搞懂:
- 向量检索(RAG)
- 数据清洗和知识构建
- 模型部署(推理延迟控制)
而不是“我会LoRA,我也会SFT,但不知道该用在哪里”。
误区3:忽略工程能力,以为搞AI就不用写脚本了
不好意思,很多大模型工作,本质就是——工程活。
你要写爬虫拿数据,要用Python跑数据处理链路,要部署模型到服务器,还得调各种依赖和环境。
所以,不会写代码,只想看论文,是做不好大模型相关工作的。
你是做业务的,那就要能把AI工具接到真实系统;你是做平台的,那就要搞定分布式系统配置;你是做数据的,那就要能用脚本快速生成训练数据集。
三、哪个方向适合你入门?我来给点建议
结合过去100+个转行学员的真实路径,我来逐个拆解:
① 数据方向:新人最容易上手的黄金入口
别小看“做数据”,它其实是目前大模型里面最容易切入、最容易出成绩、最容易落地的方向。
你要学的内容包括:
- 数据清洗、过滤、格式统一
- 有毒数据识别(脏话、敏感内容)
- prompt-响应对构建
- 评测集设计(准确率、覆盖率等)
推荐工具链:
Python / Pandas / LangChain / label studio / 数据增强脚本 / Excel也能用
适合人群:
- 完全转行的小白
- 没有模型背景但逻辑好、细节控的人
注意事项:
- 千万不要小看数据清洗,它决定了你训练出来的模型质量
- 很多大公司现在就是因为数据链路做不好,效果再强的模型也不稳定
一句话总结:数据不是脏活累活,而是最容易打出成果的一块阵地。
② 平台方向:工程师转行首选,高价值低风险
如果你之前有写后端、搞大数据、做K8s、玩过分布式系统的经验,那这个方向太适合你了。
平台岗主要负责什么?
- 构建训练pipeline:数据加载、预处理、模型训练、评估
- GPU资源调度:混部、监控、资源管理
- 自动化训练/推理系统搭建
核心能力:
- Python + Shell 脚本能力
- 熟悉 Docker / Kubernetes
- 熟悉 DeepSpeed / FSDP / NCCL 等训练优化框架
项目思路:
- 搭建一个LoRA训练平台,接收数据即可训练
- 设计一个多GPU并行推理的小平台
风险点:
- 工程偏多,适合愿意写代码、搞部署的人
- 如果抗拒写脚本调系统,那就别碰了
③ 应用方向:最卷也最诱人的一块
这块是大模型最“显眼”的岗位,比如你看到的对话系统、AIGC生成工具、搜索问答、智能客服……都属于这个方向。
主要内容:
- Prompt工程:设计提示词结构,提高响应质量
- 多模态交互:文本+图像+语音的整合
- 应用系统接入:接第三方API、加上业务逻辑、部署上线
推荐学习路径:
- 掌握LangChain / LlamaIndex 等中间件
- 学会RAG基本实现(检索+生成)
- 理解如何评估一个大模型输出质量
注意:
- 想进这个方向,业务sense很关键。你得知道你解决的是什么问题。
- 对于简历来说,最好有真实场景demo,比如“帮某企业搭建了法务问答机器人”。
建议新手:先从数据方向做几轮项目,等理解了底层,再切入应用,胜率更高。
④ 部署方向:高门槛、高回报,但不是新手切入点
部署工程师是被严重低估的工种。为什么?
因为你一旦把推理效率提升了2倍,就是实实在在地给公司省钱了。
岗位常做的事:
- 推理加速:TensorRT、ONNX、vLLM、量化、裁剪
- 小模型构建:蒸馏、低秩分解、KV缓存复用
- 多卡部署:多租户并发服务、模型冷热加载优化
建议先别直接跳:
- 如果你没有系统开发背景 / 没有玩过CUDA / 没调过C++框架,就别硬上
- 更合理的做法:从平台转部署,从实战中积累经验
四、你该怎么开始准备?最实战的路线图来了
别再盲学了,师兄给你一条入门路径图:
✅ 第1阶段(0-1个月):认知期
- 看懂主流大模型技术体系:GPT、RAG、LoRA、推理优化
- 梳理四大方向,明确自己适合哪一个
- 学完之后做一个决策:我打算从哪个方向入手?
✅ 第2阶段(1-3个月):实战积累期
- 找一个开源项目,亲自从数据到部署跑一遍
- 模仿做一套自己的数据处理+训练demo(比如新闻摘要生成)
- 整理学习过程、写成笔记、发布在公众号/知乎/掘金,打造技术影响力
✅ 第3阶段(3-6个月):项目打磨 + 简历优化期
- 聚焦一个细分场景(法律问答/多轮对话/RAG系统)做成完整demo
- 梳理你做的工作,整理代码,准备简历亮点
- 同时投递大模型相关岗位,提升面试通过率
五、大模型训练营:适合谁?怎么用最省力?
很多同学问我:“师兄,训练营我适合报名吗?”
我的建议是:如果你满足以下任意一个情况,可以考虑进来系统搞定:
- 完全0基础,想转行但没方向
- 学了很多但始终落不了地,不知道从哪下手
- 想拿项目 + 简历,冲击秋招/春招/社招的大模型岗位
在我们训练营里,我们会:
- 带你系统过一遍基础知识点,不会遗漏也不会啃论文
- 设计实战项目作业,真实数据 + 真实业务场景
- 提供导师1对1指导,不是放着你自学
- 每周直播 + 答疑 + 简历修改 + 内推资源
我们做这件事,已经服务了超过千人,转行率、Offer率都有数据。
六、最后一句话
大模型的红利期还没结束,但“瞎忙”的时代已经过去了。
现在不是信息差能吃饭,而是谁真正有实战能力 + 工程落地能力。
你能不能搭一个能跑的RAG系统?你能不能把模型从80G压缩到5G还能跑?你能不能用开源模型替代API完成客户需求?
这些,才是真正能拿Offer的“技能”。
选对路径,少走弯路,别急着卷,先活下来、站稳了,再去追前沿。
大模型未来如何发展?普通人能从中受益吗?
在科技日新月异的今天,大模型已经展现出了令人瞩目的能力,从编写代码到医疗诊断,再到自动驾驶,它们的应用领域日益广泛。那么,未来大模型将如何发展?普通人又能从中获得哪些益处呢?
通用人工智能(AGI)的曙光:未来,我们可能会见证通用人工智能(AGI)的出现,这是一种能够像人类一样思考的超级模型。它们有可能帮助人类解决气候变化、癌症等全球性难题。这样的发展将极大地推动科技进步,改善人类生活。
个人专属大模型的崛起:想象一下,未来的某一天,每个人的手机里都可能拥有一个私人AI助手。这个助手了解你的喜好,记得你的日程,甚至能模仿你的语气写邮件、回微信。这样的个性化服务将使我们的生活变得更加便捷。
脑机接口与大模型的融合:脑机接口技术的发展,使得大模型与人类的思维直接连接成为可能。未来,你可能只需戴上头盔,心中想到写一篇工作总结”,大模型就能将文字直接投影到屏幕上,实现真正的心想事成。
大模型的多领域应用:大模型就像一个超级智能的多面手,在各个领域都展现出了巨大的潜力和价值。随着技术的不断发展,相信未来大模型还会给我们带来更多的惊喜。赶紧把这篇文章分享给身边的朋友,一起感受大模型的魅力吧!
那么,如何学习AI大模型?
在一线互联网企业工作十余年里,我指导过不少同行后辈,帮助他们得到了学习和成长。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑。因此,我坚持整理和分享各种AI大模型资料,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频。
学习阶段包括:
1.大模型系统设计
从大模型系统设计入手,讲解大模型的主要方法。包括模型架构、训练过程、优化策略等,让读者对大模型有一个全面的认识。
2.大模型提示词工程
通过大模型提示词工程,从Prompts角度入手,更好发挥模型的作用。包括提示词的构造、优化、应用等,让读者学会如何更好地利用大模型。
3.大模型平台应用开发
借助阿里云PAI平台,构建电商领域虚拟试衣系统。从需求分析、方案设计、到具体实现,详细讲解如何利用大模型构建实际应用。
4.大模型知识库应用开发
以LangChain框架为例,构建物流行业咨询智能问答系统。包括知识库的构建、问答系统的设计、到实际应用,让读者了解如何利用大模型构建智能问答系统。
5.大模型微调开发
借助以大健康、新零售、新媒体领域,构建适合当前领域的大模型。包括微调的方法、技巧、到实际应用,让读者学会如何针对特定领域进行大模型的微调。
6.SD多模态大模型
以SD多模态大模型为主,搭建文生图小程序案例。从模型选择、到小程序的设计、到实际应用,让读者了解如何利用大模型构建多模态应用。
7.大模型平台应用与开发
通过星火大模型、文心大模型等成熟大模型,构建大模型行业应用。包括行业需求分析、方案设计、到实际应用,让读者了解如何利用大模型构建行业应用。
学成之后的收获👈
• 全栈工程实现能力:通过学习,你将掌握从前端到后端,从产品经理到设计,再到数据分析等一系列技能,实现全方位的技术提升。
• 解决实际项目需求:在大数据时代,企业和机构面临海量数据处理的需求。掌握大模型应用开发技能,将使你能够更准确地分析数据,更有效地做出决策,更好地应对各种实际项目挑战。
• AI应用开发实战技能:你将学习如何基于大模型和企业数据开发AI应用,包括理论掌握、GPU算力运用、硬件知识、LangChain开发框架应用,以及项目实战经验。此外,你还将学会如何进行Fine-tuning垂直训练大模型,包括数据准备、数据蒸馏和大模型部署等一站式技能。
• 提升编码能力:大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握将提升你的编码能力和分析能力,使你能够编写更高质量的代码。
学习资源📚
- AI大模型学习路线图:为你提供清晰的学习路径,助你系统地掌握AI大模型知识。
- 100套AI大模型商业化落地方案:学习如何将AI大模型技术应用于实际商业场景,实现技术的商业化价值。
- 100集大模型视频教程:通过视频教程,你将更直观地学习大模型的技术细节和应用方法。
- 200本大模型PDF书籍:丰富的书籍资源,供你深入阅读和研究,拓宽你的知识视野。
- LLM面试题合集:准备面试,了解大模型领域的常见问题,提升你的面试通过率。
- AI产品经理资源合集:为你提供AI产品经理的实用资源,帮助你更好地管理和推广AI产品。
👉获取方式: 😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】