概率论与数理统计-第4篇:多维随机变量与联合分布
一、从单变量到多变量:现实世界的复杂建模需求
在人工智能与大数据分析中,单一随机变量往往不足以描述复杂现象。例如,在图像识别中,每个像素点的灰度值构成多维随机变量;在用户行为分析里,用户的年龄、消费金额、浏览时长等多个属性需联合建模。多维随机变量通过联合分布刻画变量间的依赖关系,为深度学习中的特征工程、推荐系统的协同过滤等任务提供理论支持。
二、多维随机变量的基础概念
1. 联合分布函数
设(X1,X2,⋯ ,Xn)(X_1, X_2, \cdots, X_n)(X