离线数仓VS实时数仓

离线数据仓库(Offline Data Warehouse)和实时数据仓库(Real-time Data Warehouse)的实施有一些相似之处,但也存在显著的差异。以下是两者在几个关键方面的对比:

相同点:

  1. 数据集成

    • 都需要从多个数据源提取、转换和加载数据(ETL/ELT)。
    • 都需要处理数据清洗、去重和规范化,以保证数据的一致性和准确性。
  2. 数据建模

    • 都需要进行数据建模,设计数据仓库的星型或雪花模型,定义事实表和维度表。
    • 都需要进行数据架构设计,以优化数据存储和查询性能。
  3. 数据存储

    • 都需要考虑数据存储的高效性和可扩展性,选择合适的存储方案和技术。
    • 都需要对历史数据进行管理和归档,以保证数据仓库的长久有效性。
  4. 数据安全和治理

    • 都需要实施数据安全措施,如数据加密、访问控制和审计。
    • 都需要建立数据治理框架,确保数据质量、数据管理和合规性。

不同点:

  1. 数据刷新频率

    • 离线数据仓库:通常按批次定期(例如每天、每周)进行数据更新和加载,数据处理有一定的延迟。
    • 实时数据仓库:数据实时或近实时地更新和加载,支持低延迟的数据处理和查询。
  2. 技术架构

    • 离线数据仓库:通常依赖传统的批处理架构,使用ETL工具在固定时间窗口内处理数据。
    • 实时数据仓库:需要支持流数据处理的架构,可能使用Kafka、Apache Flink、Apache Storm等技术,进行持续的数据流处理和实时分析。
  3. 性能要求

    • 离线数据仓库:性能需求相对较低,因为数据处理可以安排在非高峰期,批处理任务可以在夜间执行。
    • 实时数据仓库:需要较高的性能和低延迟,以支持实时数据的高效处理和快速响应。
  4. 数据一致性

    • 离线数据仓库:数据一致性较容易保证,因为数据在批处理过程中可以进行全面的校验和验证。
    • 实时数据仓库:保证数据一致性较为复杂,因为需要在数据流动过程中进行一致性检查和事务处理。
  5. 复杂度和成本

    • 离线数据仓库:实施和维护相对简单,成本较低,但难以满足实时分析需求。
    • 实时数据仓库:实施和维护复杂度较高,成本也更高,但能够提供实时数据分析的能力。
  6. 应用场景

    • 离线数据仓库:适用于报告、历史数据分析和数据挖掘等不需要实时性的场景。
    • 实时数据仓库:适用于实时监控、实时决策支持和事件驱动的分析场景,如金融交易监控、网络安全检测等。

总结

离线数据仓库和实时数据仓库在数据集成、数据建模和数据治理等方面有许多相似之处,但在数据刷新频率、技术架构、性能要求、数据一致性、复杂度和成本等方面存在显著差异。企业需要根据具体的业务需求、技术能力和预算,选择适合的数仓类型或结合使用以满足不同的需求。

上百节课视频详细讲解,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 本课程采用由浅入深,层层递进的讲解方式, 让你轻松掌握企业级数仓架构的搭建及使用, 使用该架构可以胜任企业级实时数仓离线数仓构建。 课程内容: 1. 项目背景介绍 2. 数据建模应用 3. 基于Kylin的OLAP分析 4. 需求分析与项目设计 5. 订单与销售额指标计算 6.行为指标计算 7.Druid的安装使用 8.流式数仓实现 适用人群: 1、对企业级数据仓库构建感兴趣,有一定大数据基础。 2、对目前职业有进一步提升要求,希望从事数据行业高薪工作的在职人员。 3、对数据行业感兴趣的相关人员。 基础课程主讲内容包括: 阶段一:千亿级实时数仓项目总体介绍 1. 数据仓库在企业里面的重要性 2. 千亿级实时数仓的项目演示 阶段二: 数据建模的应用 1. 为什么要数据建模 2. 维度指标的概念 3. 指标维度建模案例 阶段三. 数据仓库从0到1的过程 1. 数仓典型分层思想(ODS、DWB、DWS、DM、ADS) 2. 数仓建设0到1的过程实战 3. 企业级数据仓库设计的规范 阶段四:基于Kylin的OLAP分析 1. Kylin自带的example案例介绍 2. Kylin的Cube创建 3. Kylin的数据膨胀介绍 阶段五:需求分析与项目设计 1. 需求分析 2. canal搭建 3. canal数据写入kafka 阶段六:订单与销售额指标计算 1. 销售额指标体系介绍 2. flink实时消费Kafka订单数主题数据 3. 订单金额指标统计 阶段七:行为指标计算 1. 模拟通过埋点方式采集行为数据 2. 使用Flink Streaming计算用户行为相关指标 3. Flink CEP实现转化率分析 阶段八: Druid的安装使用 1. Druid实时数据摄入 2. Druid基于JSON查询语法 3. Imply Pivot可视化数据分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值