GTW likes gt
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 800 Accepted Submission(s): 291
Problem Description
Long long ago, there were
n
adorkable GT. Divided into two groups, they were playing games together, forming a column. The
i−th
GT would randomly get a value of ability
bi
. At the
i−th
second, the
i−th
GT would annihilate GTs who are in front of him, whose group differs from his, and whose value of ability is less than his.
In order to make the game more interesting, GTW, the leader of those GTs, would emit energy for m times, of which the i−th time of emitting energy is ci . After the ci second, b1,b2,...,bci would all be added 1.
GTW wanted to know how many GTs would survive after the n−th second.
In order to make the game more interesting, GTW, the leader of those GTs, would emit energy for m times, of which the i−th time of emitting energy is ci . After the ci second, b1,b2,...,bci would all be added 1.
GTW wanted to know how many GTs would survive after the n−th second.
Input
The first line of the input file contains an integer
T(≤5)
, which indicates the number of test cases.
For each test case, there are n+m+1 lines in the input file.
The first line of each test case contains 2 integers n and m , which indicate the number of GTs and the number of emitting energy, respectively. (1≤n,m≤50000)
In the following n lines, the i−th line contains two integers ai and bi , which indicate the group of the i−th GT and his value of ability, respectively. (0≤ai≤1,1≤bi≤106)
In the following m lines, the i−th line contains an integer ci , which indicates the time of emitting energy for i−th time.
For each test case, there are n+m+1 lines in the input file.
The first line of each test case contains 2 integers n and m , which indicate the number of GTs and the number of emitting energy, respectively. (1≤n,m≤50000)
In the following n lines, the i−th line contains two integers ai and bi , which indicate the group of the i−th GT and his value of ability, respectively. (0≤ai≤1,1≤bi≤106)
In the following m lines, the i−th line contains an integer ci , which indicates the time of emitting energy for i−th time.
Output
There should be exactly
T
lines in the output file.
The i−th line should contain exactly an integer, which indicates the number of GTs who survive.
The i−th line should contain exactly an integer, which indicates the number of GTs who survive.
Sample Input
1 4 3 0 3 1 2 0 3 1 1 1 3 4
Sample Output
3HintAfter the first seconds,$b_1=4,b_2=2,b_3=3,b_4=1$ After the second seconds,$b_1=4,b_2=2,b_3=3,b_4=1$ After the third seconds,$b_1=5,b_2=3,b_3=4,b_4=1$,and the second GT is annihilated by the third one. After the fourth seconds,$b_1=6,b_2=4,b_3=5,b_4=2$ $c_i$ is unordered.
Source
官方思路:
首先这道题有一个很显然的O(n∗logn)O(n*logn)O(n∗logn)的做法,直接区间加,求区间最大值即可。 但是此题还有一个O(n)O(n)O(n)的做法。我们发现b1,b2,...,bxb_1,b_2,...,b_xb1,b2,...,bx都加111就相当于bx+1,bx+2,...,bnb_{x+1},b_{x+2},...,b_nbx+1,bx+2,...,bn都减111。然后我们可以倒着做,记一下最大值,如果遇到了修改操作,就把最大值减111,然后判断一下这个人会不会被消灭掉,然后再更新一下最大值。
我的代码:
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
struct node
{
int x;
int op;
}data[50005];
int main()
{
int t;
scanf("%d",&t);
int c[50005];
while(t--)
{//cout<<"1"<<endl;
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&data[i].op,&data[i].x);
}
memset(c,0,sizeof(c));
int x;
for(int i=1;i<=m;i++)
{
scanf("%d",&x);
c[x+1]++;
}
int cnt=0;
for(int i=1;i<=n;i++)
{
data[i].x+=m-cnt;
cnt+=c[i+1];
}
int max0=-10000000;
int max1=-10000000;
for(int i=n;i>=1;i--)
{
if(data[i].op)
{
if(data[i].x<max0)
{
n--;
}
max1=max(max1,data[i].x);
}
else
{
if(data[i].x<max1)
n--;
max0=max(max0,data[i].x);
}
}
cout<<n<<endl;
}
return 0;
}
/*
2
4 4
0 3
1 2
0 3
1 1
1 2 2 4
*/