【99. 岛屿数量】

题目:

给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述
第一行包含两个整数 N, M,表示矩阵的行数和列数。

后续 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述
输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出 0。
输入示例
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

输出示例
3

提示信息
在这里插入图片描述

根据测试案例中所展示,岛屿数量共有 3 个,所以输出 3。

数据范围:

  • 1 <= N, M <= 50

广度优先搜索理论基础:

广搜的搜索方式就适合于解决两个点之间的最短路径问题。

因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。

当然,也有一些问题是广搜 和 深搜都可以解决的,例如岛屿问题,这类问题的特征就是不涉及具体的遍历方式,只要能把相邻且相同属性的节点标记上就行。

广搜的过程

广搜一圈一圈的搜索过程

代码框架

这一圈一圈的搜索过程是怎么做到的,是放在什么容器里,才能这样去遍历。

其实,我们仅仅需要一个容器,能保存我们要遍历过的元素就可以,那么用队列,还是用栈,甚至用数组,都是可以的。

用队列的话,就是保证每一圈都是一个方向去转,例如统一顺时针或者逆时针。

因为队列是先进先出,加入元素和弹出元素的顺序是没有改变的。

如果用栈的话,就是第一圈顺时针遍历,第二圈逆时针遍历,第三圈有顺时针遍历。

因为栈是先进后出,加入元素和弹出元素的顺序改变了。

那么广搜需要注意 转圈搜索的顺序吗? 不需要!

所以用队列,还是用栈都是可以的,但大家都习惯用队列了

下面给出广搜代码模板,该模板针对的就是,上面的四方格的地图广搜一圈一圈的搜索过程: (详细注释)

// dir[4][2] 是一个二维数组,其中:
// 第一维(dir[i])表示方向,共有 4 个方向。
// 第二维(dir[i][0] 和 dir[i][1])表示在每个方向上的 x 和 y 的变化值。
// 对于{1, 0},表示右方向。x 增加,表示向右移动。:
// dir[i][0] = 1:表示 x 坐标的变化值。
// dir[i][1] = 0:表示 y 坐标的变化值。
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    queue<pair<int, int>> que; // 定义队列
    que.push({x, y}); // 起始节点加入队列
    visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点
    while(!que.empty()) { // 开始遍历队列里的元素
        pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素
        int curx = cur.first;
        int cury = cur.second; // 当前节点坐标
        for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历
            int nextx = curx + dir[i][0];
            int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标
            if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 坐标越界了,直接跳过
            if (!visited[nextx][nexty]) { // 如果节点没被访问过
                que.push({nextx, nexty});  // 队列添加该节点为下一轮要遍历的节点
                visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问
            }
        }
    }
}

思路

注意题目中每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

也就是说斜角度链接是不算了, 例如示例二,是三个岛屿,如图:
图一

这道题题目是 DFS,BFS,并查集,基础题目。

本题思路:遇到一个没有遍历过的节点陆地,计数器就加一,然后把该节点陆地所能遍历到的陆地都标记上。

再遇到标记过的陆地节点和海洋节点的时候直接跳过。 这样计数器就是最终岛屿的数量。

那么如果把节点陆地所能遍历到的陆地都标记上呢,就可以使用 DFS,BFS或者并查集。

广度优先搜索

不少同学用广搜做这道题目的时候,超时了。 这里有一个广搜中很重要的细节:

根本原因是只要 加入队列就代表 走过,就需要标记,而不是从队列拿出来的时候再去标记走过。

很多同学可能感觉这有区别吗?

如果从队列拿出节点,再去标记这个节点走过,就会发生下图所示的结果,会导致很多节点重复加入队列。
图二


代码:

#include<iostream>
#include<vector>
#include<queue>

using namespace std;

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; //  四个方向

void bfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y){
    queue<pair<int, int>> que;
    que.push({x, y});   //  将点放入队列中
    //  加入队列后标记已访问
    //  这里包括下面标记访问的地方与A*中不同,因为这里不需要评估节点的价值,可以立即标记已访问
    //  而A*中需要从OpenList中取出进行评估时,才标记为已访问,不然将会缺少这些节点扩展
    visited[x][y] = true;   
    
    while(!que.empty()){
        pair<int, int> cur = que.front(); que.pop();    //  从队列中取出第一个节点作为当前节点
        int curX = cur.first;
        int curY = cur.second;
        
        for(int i = 0; i < 4; i++){
            int nextX = curX + dir[i][0];
            int nextY = curY + dir[i][1];
            
            //  超出方格界限,跳过
            if(nextX < 0 || nextX >= grid.size() || nextY < 0 || nextY >= grid[0].size()) continue;
            
            if(!visited[nextX][nextY] && grid[nextX][nextY] == 1){
                que.push({nextX, nextY});   //  注意这里将新节点放入队列中
                visited[nextX][nextY] = true;   //  只要加入队列立刻标记
            }
        }
    }
}


int main(){
    
    int n, m;
    
    cin >> n >> m;
    
    vector<vector<int>> grid(n, vector<int>(m, 0));
    
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            cin >> grid[i][j];
        }
    }
    
    vector<vector<bool>> visited(n, vector<bool>(m, false));
    
    int result = 0;
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            if(!visited[i][j] && grid[i][j] == 1){
                result++;   //  遇到没访问的陆地, +1
                bfs(grid, visited, i, j);   //  将与其连接的陆地都标记上true
            }
        }
    }
    
    cout << result << endl;
    
    return 0;
}

总结:

广搜的搜索方式就适合于解决两个点之间的最短路径问题。

因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。

当然,也有一些问题是广搜 和 深搜都可以解决的,例如岛屿问题,这类问题的特征就是不涉及具体的遍历方式,只要能把相邻且相同属性的节点标记上就行。


参考:

代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值