《100个Go语言典型错误》精读+图解笔记

本系列文章是对《100个Go语言典型错误》书籍的精读笔记.

《100个Go语言典型错误》中文版是从英文电子书《100 Go Mistakes and How to Avoid them》翻译而来。

英文版的电子书售价大约25美元,国内中文版便宜点的要69元,贵一些的要卖到179元。

我早在2021年就购买了英文原版,那会我刚学Go语言,这本书对我的帮助也非常大。

为什么写精读笔记呢?

  • 省时,省时,省时。以 精读+图文解读 的形式能更好帮助读者理解本书内容

  • 省钱,省钱,省钱。根据上面提到的价格,英文版或中文版价格还是比较昂贵的。

  • 免费,免费,免费。读完精读,读原版。原版电子书可免费“借阅”

谁适合阅读?

已掌握Go语言的基础知识,用Go语言做过,同时想更深入掌握Go语言的开发者。

希望该专栏,能够用最少的时间,帮你学习到Go语言最核心的内容;在工作中,不再踩坑。

基于ASP.NET MVC的开源博客 Features: 基本博客功能(文章、页面、链接、评论等) trackback 发送 内置邮件发送 自定义文章伪静态地址 附带数据缓存,提高访问速度 SEO相关(sitemap、rebots等) 文章、评论 Rss 等 支持完全自定义主题 多作者撰写支持 数据导入与导出 便捷安装 IIS6与IIS7经典模式支持 Gravatar 身份认证 多种数据库支持(Sqllite, MySql, MSSql, Access等) 之间发布的1.0版本,仅仅是一个demo,各方面都存在问题,可以说是一个不能正常使用的版本。没有考虑后台功能、程序健壮性、易用性等 这里可以列一些比较突出的改进: 添加新文章时自动翻译标题 这个功能作何用呢?文章标题我会存两份,一份为输入的标题,另一份为对应的英文标题。英文标题主要用于构建文章URL,我想应该有利于SEO的吧。 自动草稿 目前自动存草稿的频率比较高,不到1分钟就会存一次,因此不要担心写了半天忘记保存,下次登录系统打开草稿就是。但是一些比较先进的内容管理系统都支持修订,这个我还不知道是怎么实现的。 关键词链接 如果你给一篇文章给定了标签,你可以在后台系统配置,是否自动将这些标签都加上链接,增加内链。如果同一个标签在你文章中出现多次,你也可以指定只需要在第一次出现的地方增加链接。这个功能对你的SEO也有一定的帮助。 给搜索引擎准备的robots.txt 默认情况下,安装后,默认就会有robots.txt,内容比较简单,目前不允许修改,在后期版本中,可以在后台设置其内容。另外,系统也会给你准备一份 sitemap.xml,便于搜索引擎抓取网站内容。 有了这两样东西,你就可以利用google webmaster提交你的博客网站了,提交后google几乎是实时监控你网站的变化,第一时间将你的内容出现的搜索结果上。 不得不多说一句,最近google推出了buzz,凡是通过webmaster验证的网站,都可以与buzz关联,发表的新文章也会同时出现的buzz上。 文章地址重写 也可以成为“固定链接”,例如本站,文章的URL地址构建格式为:post_{year}_{month}_{day}_{shortname},你可以利用系统给出的自定义标签任意组合你的URL。但Tag、Category、Page的URL目前不支持自定义。 三种用户权限 超级管理员、作者、游客,除了用户列表,作者与游客用户可以访问其他任何后台页面,但操作有限制,某些操作不允许使用。游客用户则不允许做任何操作,只允许浏览。 内置邮件发送 如果你有SMTP邮件服务器,你可以配置成你自己的邮件服务器,用以发送系统邮件。 缓存 几乎页面上所有内容都做了内存缓存,默认缓存有效期为5分钟,当然你也可以配置。对于缓存这个部分,还不是很完善。 主题 只能说,支持自定义主题,开发主题容易不容易,这个就比较难说了,反正在后期版本中会尽量做得比较方便的自定义主题。
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渔夫子@Go学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值