文章目录
一、经典排序
排序算法说明
0.1 排序的定义
对一序列对象根据某个关键字进行排序。
0.2 术语说明
- 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
- 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
- 内排序:所有排序操作都在内存中完成;
- 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
- 时间复杂度: 一个算法执行所耗费的时间。 空间复杂度:运行完一个程序所需内存的大小。
记忆口诀:冒 择 入 希 快 归 堆
图片名词解释:
n: 数据规模
k: “桶”的个数
In-place: 占用常数内存,不占用额外内存
Out-place: 占用额外内存
1. 冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述
比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。
1.2 动图演示
1.3 代码实现:
/**
* 冒泡排序
*/
public int[] bubbleSort(int[] nums){
for(int i=0; i<nums.length; i++){
for(int j=i; j<nums.length; j++){
if(nums[i] > nums[j]){
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
}
}
return nums;
}
2. 选择排序(Selection Sort)
表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。
选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
2.1 算法描述
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
- 初始状态:无序区为R[1…n],有序区为空;
- 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
- n-1趟结束,数组有序化了。
2.2 动图演示
2.3 代码实现:
public int[] selectSort(int[] nums){
for(int i=0; i<nums.length-1; i++){
int current = i;
int next = i+1;
while (next < nums.length){
if(nums[current] > nums[next]){
current = next;
}
next++;
}
if(current != i ){
int tmp = nums[current];
nums[current] = nums[i];
nums[i] = tmp;
}
}
return nums;
}
3. 插入排序(Insertion Sort)
3、插入排序(Insertion Sort)
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
3.1 算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后; 重复步骤2~5。
3.2 动图演示
3.3 代码实现:
public int[] insertSort(int[] nums){
for(int i=0; i<nums.length-1; i++){
int current = nums[i+1];
int preIndex = i;
while (preIndex >= 0 && nums[preIndex] > current){
nums[preIndex+1] = nums[preIndex];
preIndex--;
}
nums[++preIndex] = current;
}
return nums;
}
4. 希尔排序 (Shell Sort)
希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
希尔排序是把记录按下表的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
4.1 算法描述
我们来看下希尔排序的基本步骤,在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2…1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
- 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 按增量序列个数k,对序列进行k 趟排序;
- 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1时,整个序列作为一个表来处理,表长度即为整个序列的长度。
4.2 过程演示
4.3 代码实现
public int[] shellSort(int[] nums){
int gap = nums.length / 2;
while (gap > 0){
for(int i=gap; i<nums.length; i++){
int preIndex = i-gap;
int current = nums[i];
// 引用插入排序
while (preIndex>=0 && nums[preIndex] > current){
nums[preIndex+gap] = nums[preIndex];
preIndex -= gap;
}
nums[preIndex+gap] = current;
}
gap = gap / 2;
}
return nums;
}
5. 快速排序 (Quick Sort)
快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
5.1 算法描述
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
5.2 动图演示
5.3 代码实现
public int[] quickSort(int[] nums,int start, int end){
if(start < end){
int pivot = partition(nums,start,end);
quickSort(nums,start,pivot-1);
quickSort(nums,pivot+1,end);
}
return nums;
}
private int partition(int[] array, int start, int end){
int smallIndex = start - 1; //初始化 smallIndex = start - 1,用于标记小于等于 pivot 的元素的最后位置。
int pivot = array[end]; //选择 arr[end] 作为基准元素 pivot
for(int i=start; i<end; i++){
if(array[i] < pivot){
smallIndex++;
swap(array,smallIndex,i);
}
}
swap(array,end,smallIndex+1); // 最后将 pivot 放到正确位置(i + 1)
return smallIndex+1;
}
private void swap(int[]array, int i, int j){
if(i == j) return;
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
6. 归并排序 (Merge Sort)
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
6.1 算法描述
- 把长度为n的输入序列分成两个长度为n/2的子序列;
- 对这两个子序列分别采用归并排序;
- 将两个排序好的子序列合并成一个最终的排序序列。
6.2 动图演示
6.3 代码实现
public int[] mergeSort(int[] nums){
if(nums.length < 2) return nums;
int length = nums.length;
int mid = length / 2;
int[] leftNums = Arrays.copyOfRange(nums,0,mid); // exclude the mid
int[] rightNums = Arrays.copyOfRange(nums,mid,length);
int[] result = merge(mergeSort(leftNums),mergeSort(rightNums));
return result;
}
public int[] merge(int[] left, int [] right){
int[] result = new int[left.length + right.length];
int m=0,n=0;
for(int i=0; i<result.length; i++){
if(m>=left.length && n<right.length){ // left 元素已经拼接完
result[i] = right[n];
n++;
}else if(n>=right.length && m<left.length){ // right 元素已经拼接完
result[i] = left[m];
m++;
}else if(left[m] > right[n]){
result[i] = right[n];
n++;
}else{
result[i] = left[m];
m++;
}
}
return result;
}
7. 堆排序
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
7.1 算法描述
- 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
7.2 动图演示
6.3 代码实现
/**
* 节点为 n 的堆,根数量:n/2 -1,节点 k的 left子节点 2*k + 1, right子节点 2*k + 2
* @param nums
* @return
*/
private int heapSortArrayLength = 0;
public int[] heapSort(int[] nums) {
heapSortArrayLength = nums.length;
if(heapSortArrayLength < 1){
return nums;
}
// 构建最大堆
buildMaxHeap(nums);
// 排序:将堆顶元素(最大值)与堆的最后一个元素交换,然后调整堆
while (heapSortArrayLength > 0){
swap(nums,0,heapSortArrayLength -1);
heapSortArrayLength--;
adjustHeap(nums,0);// 将堆顶元素(最大值)与堆的最后一个元素交换,调整剩余部分为最大堆
}
return nums;
}
/**
* 构建最大堆
* @param nums 待构建堆的数组
*/
private void buildMaxHeap(int[] nums){
// 从最后一个非叶子节点开始,依次调整堆
for(int i=nums.length/2-1; i>=0; i-- ){
adjustHeap(nums,i);
}
}
/**
* 调整堆
* @param nums 待调整的数组
* @param i 当前节点的索引
*/
private void adjustHeap(int[] nums,int i){
int maxIndex = i;
if( i*2 < heapSortArrayLength && nums[i*2] > nums[maxIndex]){
maxIndex = i*2;
}
if( i*2+1 < heapSortArrayLength && nums[i*2+1] > nums[maxIndex]){
maxIndex = i*2 +1;
}
// 如果最大值索引发生变化,交换节点并递归调整
if(maxIndex != i){
swap(nums,maxIndex,i);
adjustHeap(nums,maxIndex);
}
}
二、搜索算法
2.1 二分搜索
/**
* 二分搜索,要求有序数组
* @param nums
* @param target
* @return
*/
public static int binarySearch(int[] nums, int target){
Arrays.sort(nums);
int left = 0, right = nums.length;
int mid = (left + right) / 2;
while (mid > 0){
if(target == nums[mid]){
return mid;
}else if(target > nums[mid]){
left = mid;
mid = (left + right) / 2;
}else if(target < nums[mid]){
right = mid;
mid = (left + right) / 2;
}else{
while (Math.abs(right - left) == 1){
if(nums[right-1] == target){
return right -1;
}else{
return -1;
}
}
}
}
return -1;
}
2.2 差值搜索
/**
* 插值搜索 是对二分搜索的改进,它根据目标元素与数组首尾元素的关系,
* 自适应地确定中间元素的位置,而不是简单地取中间位置。
* 插值搜索适用于数据分布均匀的有序数组,在这种情况下,它的平均时间复杂度可以达到
* @param nums
* @param target
* @return
*/
public static int interpolationSearch(int[] nums, int target){
Arrays.sort(nums);
int result = -1;
int left=0, right = nums.length-1;
while (left <= right && target >= nums[left] && target <= nums[right]){
if(left == right){
return (target == nums[left]) ? left : result;
}
int pos = left + (right - left) / (nums[right] - nums[left]) * (target - nums[left]); // 确定 pos 位置是关键
if(target == nums[pos]){
return pos;
}else if(target > nums[pos]){
left = pos +1;
}else{
right = pos -1;
}
}
return result;
}
2.3 二叉树宽度遍历BFS
/**
* 二叉树的宽度遍历
*/
public static void treeBFS(TreeNode node){
if(node == null) return;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(node);
while (!queue.isEmpty()){
TreeNode treeNode = queue.poll();
System.out.print(treeNode.value + " ");
if(treeNode.left != null) queue.offer(treeNode.left);
if(treeNode.right != null) queue.offer(treeNode.right);
}
}
2.4 二叉树深度遍历DFS(先序/中序/后序)
/**
* TreeNode DFS(先序/中序/后序) / BFS(Queue实现)
*/
static class TreeNode{
int value;
TreeNode left,right;
TreeNode(int value){
this.value = value;
this.left = null;
this.right = null;
}
}
/**
* 先序遍历 根 -> 左 -> 右
* @param node
*/
public static void preOrderDFS(TreeNode node){
if(node == null) return;
System.out.print(node.value + " ");
preOrderDFS(node.left);
preOrderDFS(node.right);
}
/**
* 中序遍历 左 -> 根 -> 右
*/
public static void inOrderDFS(TreeNode node){
if(node == null) return;
inOrderDFS(node.left);
System.out.print(node.value + " ");
inOrderDFS(node.right);
}
/**
* 后序遍历 左 -> 右 -> 根
*/
public static void postOrderDFS(TreeNode node){
if(node == null) return;
postOrderDFS(node.left);
postOrderDFS(node.right);
System.out.print(node.value + " ");
}
2.5 图的数据结构
图的存储结构,有 临接矩阵
和 邻接表
,按照这两种存储结构,图的数据结构定义如下:
// ===========================图的数据结构 start===============================
/**
* 存储结构--邻接矩阵
*/
static class GraphMatrix{
int[][] adjacentMatrix;
boolean[] isVisited;
int vertexTotalNumber;
GraphMatrix(int n){
this.vertexTotalNumber = n;
this.adjacentMatrix = new int[vertexTotalNumber][vertexTotalNumber];
this.isVisited = new boolean[vertexTotalNumber];
}
private void initVisited(){
for(int i=0; i<vertexTotalNumber; i++){
isVisited[i] = false;
}
}
private void addEdge(int v, int w, int weigh){
adjacentMatrix[v][w] = adjacentMatrix[w][v] = weigh; // 设置为权重 weigh 解决实际问题
}
}
/**
* 存储结构--邻接表
*/
static class Edge{
int dest;
int weight;
public Edge(int dest, int weight){
this.dest = dest;
this.weight = weight;
}
public int getDest() {
return dest;
}
public int getWeight() {
return weight;
}
}
static class GraphTable{
private int vertexTotalNumber;
private List<List<Edge>> adjacentTable;
private boolean[] isVisited;
GraphTable(int n){
this.vertexTotalNumber = n;
this.adjacentTable = new ArrayList<>();
this.isVisited = new boolean[vertexTotalNumber];
for(int i=0; i<n; i++){
adjacentTable.add(new ArrayList<>());
}
}
public void addEdge(int src, int dest, int weight){
Edge edge = new Edge(dest,weight);
adjacentTable.get(src).add(edge);
}
}
以下遍历算法,都是基于这两种存储结构进行。
2.5.1 图的深度优先遍历DFS(迭代实现)
图的存储分为 邻接表存储
邻接矩阵存储
,所以 迭代
方式的DFS 分这两种存储结构来实现:
/**
* 图(邻接矩阵存储)的深度优先遍历 -- 迭代实现
*/
public static void graphMatrixDFS2(GraphMatrix graphMatrix,int startVertex){
graphMatrix.initVisited();
Stack<Integer> stack = new Stack<>();
stack.push(startVertex);
graphMatrix.isVisited[startVertex] = true;
System.out.print("图的DFS(邻接矩阵存储 迭代实现):");
while (!stack.isEmpty()){
int vertex = stack.pop();
System.out.print(vertex + " ");
for(int i=1; i<graphMatrix.vertexTotalNumber; i++){
if(graphMatrix.adjacentMatrix[vertex][i] != 0 && !graphMatrix.isVisited[i]){
stack.push(i);
graphMatrix.isVisited[i] = true;
}
}
}
System.out.println("");
}
/**
* 图(邻接表存储)的深度优先遍历 -- 迭代实现
*/
public static void graphTableDFS2(GraphTable graphTable, int startVertex){
boolean[] isVisited = new boolean[graphTable.vertexTotalNumber];
isVisited[startVertex] = true;
Stack<Integer> stack = new Stack<>();
stack.push(startVertex);
while (!stack.isEmpty()){
int vertex = stack.pop();
System.out.print(vertex + " ");
for(Edge edge : graphTable.adjacentTable.get(vertex)){
if(!isVisited[edge.getDest()]){
isVisited[edge.getDest()] = true;
stack.push(edge.getDest());
}
}
}
}
2.5.2 图的深度优先遍历DFS(递归实现)
图的存储分为 邻接表存储
邻接矩阵存储
,所以 递归
方式的DFS 分这两种存储结构来实现:
/**
* 图(邻接矩阵)的深度优先遍历 -- 递归实现
* @param graph
*/
public static void graphMatrixDFS(GraphMatrix graph, int startIndex){
System.out.print("图的DFS(邻接矩阵存储 递归实现):");
graphDFSHelper(graph,startIndex);
System.out.println("");
}
private static void graphDFSHelper(GraphMatrix graph, int startIndex){
graph.isVisited[startIndex] = true;
System.out.print(startIndex + " ");
for(int i=0; i<graph.vertexTotalNumber; i++){
if(graph.adjacentMatrix[startIndex][i] != 0 && !graph.isVisited[i]){ // 连通 && 没有被访问过
graphDFSHelper(graph,i);
}
}
}
/**
* 图(邻接表)的深度优先遍历 -- 递归实现
* @param graph
* @param startVertex
*/
public static void graphTableDFS(GraphTable graph, int startVertex){
graph.isVisited[startVertex] = true;
System.out.print(startVertex + " ");
List<Edge> nextVertexes = graph.adjacentTable.get(startVertex); // 从 startVertex 出发的所有顶点
for(Edge vertex: nextVertexes){
if(!graph.isVisited[vertex.getDest()]){
graphTableDFS(graph,vertex.getDest());
}
}
}
引文说明:
- Author 郭耀华 Title 十大经典排序最强总结.