Quick BI“数据门户”在企业数据中台建设中的重要性
企业在数据中台初步建设完成以后,怎样让客户直观感受到数据中台的价值?企业决策者、各部门管理人员、业务运营人员如何通过统一的窗口,快速看到数据中台提供的数据,并利用这些数据全方位的支持企业发展?
基于Quick BI构建的企业数据门户,有效的解决了上述问题。
Quick BI“数据门户”是数据中台提供给业务人员使用的门户和窗口,以场景化分析的方式,为企业各类人员和角色,提供统一的可视化服务。作为真正触达用户的可视化工具,Quick BI“数据门户”在企业数据中台建设中的重要性尤为突出。
为什么要对Quick BI进行优化?
企业数据中台建设完成后,数据中台作为企业统一数据的“供给方”,越来越多的部门和业务人员会成为“需求方”,希望通过数据中台的数据支持业务。随着“需求方”越来越多,并发要求越来越高,作为统一入口的Quick BI数据门户的压力随之越来越大。因此,随着数据中台在企业内推广和使用的逐步深入,需要对Quick BI进行全面优化,以满足不断增长的业务需要。
本文旨在说明的问题本篇文章基于实际客户案例中Quick BI性能优化的实践探索,总结提出数据中台建设中的测试方法和性能优化解决方案,抛砖引玉,供其他类似项目参考。
典型的数据中台技术架构
基于阿里云数据中台整体解决方案,对数据中台技术实现进行选型及设计,典型的数据中台技术架构如下图所示,整个技术架构选型包含五个层次:业务数据源存储技术、数据源接入技术、数据中台数据存储与计算技术、数据服务及数据应用技术。
数据存储计算,数据中台中离线数据存储和计算采用MaxCompute离线计算引擎;实时计算部分采用阿里云StreamCompute流式计算技术实现;数据研发与管理采用Dataphin智能数据构建与管理大数据研发平台。
数据服务层,主要分API接口和数据库服务两种方式,一般普通查询使用RDS,多维分析使用ADB,搜索服务使用ElasticSearch,在线接口使用OneService服务。
数据应用层,使用阿里云智能报表工具Quick BI实现各种定制数据报表分析需求;以及基于阿里云产品技术体系实现客户个性化数据应用需求。其中基于Quick BI产品的数据中台门户如图中橙色部分所示。
Quick BI压测方法
1、压测目标
Quick BI数据中台门户压测目标主要围绕着两类发布变更和用户体验反馈,提前做好:性能卡点、性能调优工作,满足日常客户报表的极致体验、以及性能特殊诉求。
两个卡点:
1)压测,保障上线内容无性能问题以及隐患
2)新的报表上线时,需要对新上线报表进行简单压测,避免单一报表导致整个系统性能出现瓶颈。
一个检查点:
当客户直观使用感受数据中台门户报表显示过慢时,对系统整体压测,检查性能瓶颈点进行优化。
从而保障数据中台门户满足客户日常报表可视化性能需求。
2、压测策略
1)压测环境
Quick BI数据中台门户通常在客户现场只有正式环境,Quick BI门户页面压测接口全为查询类请求,压测执行不会对线上数据造成污染。当然为了避免影响线上用户,会在用户低峰期如凌晨节点执行压测。大部分项目数据门户环境如下: