构建多模态视觉助手:使用Redis和GPT-4V处理幻灯片
在现代信息处理领域,多模态大语言模型(LLM)逐渐成为视觉助手的基础,可以实现对图像的问答功能。本文介绍一个使用GPT-4V为幻灯片提供视觉助手的模板,它能处理图表和图片,通过生成图像摘要后嵌入并存储到Redis中,并能根据用户提出的问题检索相关幻灯片并生成答案。
技术背景介绍
幻灯片通常包括丰富的视觉信息,如图表或图形。将这些信息结构化并使之可检索,可以极大地提高信息利用效率。通过多模态LLM,我们可以将图像转化为可理解的文本,从而实现即便是图像中的信息也能够被搜索和问答。
核心原理解析
- 幻灯片处理:幻灯片被转化为一系列图像。
- 图像摘要生成:使用GPT-4V生成每张幻灯片的图像摘要。
- 嵌入和存储:将图像摘要转化为文本嵌入,并在Redis中存储。Redis充当我们的VectorStore和ByteStore。
- 问答系统:通过输入查询,检索与其最相似的图像摘要,并传送到GPT-4V进行最终答案生成。
代码实现演示
下面是如何设置和执行上述流程的示例代码:
import openai
import redis
from langserve.client import RemoteRunnable
# 配置OpenAI API和Redis
client = openai.OpenAI(
base_url='https://yunwu.ai/v1',
api_key='your-openai-api-key'
)
redis_client = redis.StrictRedis.from_url('redis://localhost:6379')
# 连接到LangChain应用
runnable = RemoteRunnable("http://localhost:8000/rag-redis-multi-modal-multi-vector")
# 幻灯片处理及问答执行
def process_slides_and_qa(slide_deck_path, question):
# 假设我们已经有一个函数`extract_and_embed_slides`
slide_summaries = extract_and_embed_slides(slide_deck_path, client, redis_client)
response = runnable.run({'question': question, 'slide_summaries': slide_summaries})
return response['answer']
slide_deck_path = "/docs/nvidia_earnings_report.pdf"
question = "How much can H100 TensorRT improve LLama2 inference performance?"
answer = process_slides_and_qa(slide_deck_path, question)
print("Answer:", answer)
应用场景分析
- 企业报告分析:通过自动提取和问答,快速分析幻灯片中包含的业务信息。
- 教育和研究:帮助研究人员和学生从幻灯片中快速提取信息。
- 会议和演讲:提高演讲材料的可访问性和互动性。
实践建议
- 充分利用Redis的高效存储和检索功能以支持实时问答。
- 在生产环境中,确保多模态数据的处理和检索速度以满足实时应用需求。
- 实施日志和监控以确保系统的稳定运行(可以使用LangSmith进行跟踪)。
如果遇到问题欢迎在评论区交流。
—END—