Transformer 和 Attention机制入门

1. 什么是 Transformer
背景:
在自然语言处理领域,早期常使用循环神经网络(RNN)及其变体(如 LSTM、GRU)来处理序列数据,如机器翻译、文本生成等任务。然而,RNN 结构存在以下问题:

随着序列长度增加,模型难以捕捉远距离词汇之间的关联,且训练会出现梯度消失或梯度爆炸等现象。
训练时难以进行大规模并行计算,速度较慢。
Transformer 的诞生:
2017 年,论文《Attention is All You Need》提出了 Transformer 模型。Transformer 彻底摒弃了循环结构,转而依赖 Attention 机制 来处理序列中的依赖关系,大幅提升了训练效率,并能更好地捕捉长距离依赖。

主要结构:
Transformer 的整体结构可以概括为编码器(Encoder)和解码器(Decoder)两大部分:

Encoder:由多个相同的编码器层(Encoder Layer)堆叠而成,每一层主要包含 多头自注意力(Multi-Head Self-Attention) 和 前馈网络(Feed-Forward Network)。
Decoder:与编码器类似,也堆叠了多层的解码器层(Decoder Layer)。解码器层包含三个主要部分:掩码多头自注意力(Masked Multi-Head Self-Attention)、**与编码器交互的多头注意力(Encoder-Decoder Attention)**以及 前馈网络。
优势:

能更高效地并行训练:由于不需要按时间步逐个地处理序列。
能更好地捕捉句子中远距离的依赖关系。
在 NLP 多个任务(翻译、问答、文本生成等)上有显著的效果提升。
2. 什么是 Attention
Attention 机制的动机:
在处理一句话时,通常并不是句子中所有词对当前输出预测都同等重要。例如,“我喜欢吃苹果”这句话中,如果要预测“吃”的后面那个词,就需要更多关注“苹果”,而不必太在意“我”。Attention 机制通过加权的方式,让模型自动学习“关注”句子中最相关的部分。

计算过程概览:
在 Transformer 中,一个 Attention 模块通常包含以下步骤:

将输入向量分别映射为 Query (Q)、Key (K)、Value (V)。
通过 Q 和 K 的点积(或其他度量)计算相似度,得到注意力分布(即每个单词对于当前 Query 的重要程度)。
将注意力分数与 V 相乘以加权输出,得到最终的注意力结果。
Self-Attention(自注意力):
在 Transformer 的 Encoder 或 Decoder 内部,每个单词都将自己当作 Query,与整句话中的所有单词(包含自己)进行 Key、Value 计算,从而捕捉全局上下文信息。

具体来说,句子中每个位置都会输出自己的 Q、K、V,然后进行点积计算。这样,网络能够了解一个词与其他所有词(甚至包括它自己)之间的关系。
Multi-Head Attention(多头注意力):
自注意力 只是 Attention 机制的一个核心操作。Transformer 并不只做一次自注意力计算,而是把 Q、K、V 分成多个子空间(即多个“头”,Heads),在每个子空间分别进行注意力计算,然后再将各子空间的结果拼接起来。这样做的好处是模型可以学习到不同角度的语义关系,提升表达能力。

Encoder-Decoder Attention:

解码器在生成输出时,除了需要关注解码器本身已有的输出序列(自注意力)外,还需要关注编码器输出的上下文表示(Encoder 输出),这就是 Encoder-Decoder Attention。
模型在生成下一个词时,通过这个注意力模块能够“查看”输入句子的每个词与当前要生成的目标词之间的关联。
3. 重点总结
Transformer 的核心特点:

不再依赖传统 RNN 或 CNN 结构,而是使用 Attention 完成序列到序列的映射。
通过自注意力(Self-Attention)模块能够同时关注序列中所有位置的依赖关系,让模型可以高效并行并捕捉长距离依赖。
模型结构由堆叠的编码器层和解码器层组成,形成高度模块化的设计。
Attention 的核心作用:

通过 Q-K-V 机制计算每个词对目标词的相关性,将最重要的上下文信息赋予更高的权重。
多头注意力能够从不同的投影空间提取信息,提高模型对语义的捕捉能力。
————————————————

1. 什么是 Transformer
背景:
在自然语言处理领域,早期常使用循环神经网络(RNN)及其变体(如 LSTM、GRU)来处理序列数据,如机器翻译、文本生成等任务。然而,RNN 结构存在以下问题:

随着序列长度增加,模型难以捕捉远距离词汇之间的关联,且训练会出现梯度消失或梯度爆炸等现象。
训练时难以进行大规模并行计算,速度较慢。
Transformer 的诞生:
2017 年,论文《Attention is All You Need》提出了 Transformer 模型。Transformer 彻底摒弃了循环结构,转而依赖 Attention 机制 来处理序列中的依赖关系,大幅提升了训练效率,并能更好地捕捉长距离依赖。

主要结构:
Transformer 的整体结构可以概括为编码器(Encoder)和解码器(Decoder)两大部分:

Encoder:由多个相同的编码器层(Encoder Layer)堆叠而成,每一层主要包含 多头自注意力(Multi-Head Self-Attention) 和 前馈网络(Feed-Forward Network)。
Decoder:与编码器类似,也堆叠了多层的解码器层(Decoder Layer)。解码器层包含三个主要部分:掩码多头自注意力(Masked Multi-Head Self-Attention)、**与编码器交互的多头注意力(Encoder-Decoder Attention)**以及 前馈网络。
优势:

能更高效地并行训练:由于不需要按时间步逐个地处理序列。
能更好地捕捉句子中远距离的依赖关系。
在 NLP 多个任务(翻译、问答、文本生成等)上有显著的效果提升。
2. 什么是 Attention
Attention 机制的动机:
在处理一句话时,通常并不是句子中所有词对当前输出预测都同等重要。例如,“我喜欢吃苹果”这句话中,如果要预测“吃”的后面那个词,就需要更多关注“苹果”,而不必太在意“我”。Attention 机制通过加权的方式,让模型自动学习“关注”句子中最相关的部分。

计算过程概览:
在 Transformer 中,一个 Attention 模块通常包含以下步骤:

将输入向量分别映射为 Query (Q)、Key (K)、Value (V)。
通过 Q 和 K 的点积(或其他度量)计算相似度,得到注意力分布(即每个单词对于当前 Query 的重要程度)。
将注意力分数与 V 相乘以加权输出,得到最终的注意力结果。
Self-Attention(自注意力):
在 Transformer 的 Encoder 或 Decoder 内部,每个单词都将自己当作 Query,与整句话中的所有单词(包含自己)进行 Key、Value 计算,从而捕捉全局上下文信息。

具体来说,句子中每个位置都会输出自己的 Q、K、V,然后进行点积计算。这样,网络能够了解一个词与其他所有词(甚至包括它自己)之间的关系。
Multi-Head Attention(多头注意力):
自注意力 只是 Attention 机制的一个核心操作。Transformer 并不只做一次自注意力计算,而是把 Q、K、V 分成多个子空间(即多个“头”,Heads),在每个子空间分别进行注意力计算,然后再将各子空间的结果拼接起来。这样做的好处是模型可以学习到不同角度的语义关系,提升表达能力。

Encoder-Decoder Attention:

解码器在生成输出时,除了需要关注解码器本身已有的输出序列(自注意力)外,还需要关注编码器输出的上下文表示(Encoder 输出),这就是 Encoder-Decoder Attention。
模型在生成下一个词时,通过这个注意力模块能够“查看”输入句子的每个词与当前要生成的目标词之间的关联。
3. 重点总结
Transformer 的核心特点:

不再依赖传统 RNN 或 CNN 结构,而是使用 Attention 完成序列到序列的映射。
通过自注意力(Self-Attention)模块能够同时关注序列中所有位置的依赖关系,让模型可以高效并行并捕捉长距离依赖。
模型结构由堆叠的编码器层和解码器层组成,形成高度模块化的设计。
Attention 的核心作用:

通过 Q-K-V 机制计算每个词对目标词的相关性,将最重要的上下文信息赋予更高的权重。
多头注意力能够从不同的投影空间提取信息,提高模型对语义的捕捉能力。
————————————————

1. 什么是 Transformer
背景:
在自然语言处理领域,早期常使用循环神经网络(RNN)及其变体(如 LSTM、GRU)来处理序列数据,如机器翻译、文本生成等任务。然而,RNN 结构存在以下问题:

随着序列长度增加,模型难以捕捉远距离词汇之间的关联,且训练会出现梯度消失或梯度爆炸等现象。
训练时难以进行大规模并行计算,速度较慢。
Transformer 的诞生:
2017 年,论文《Attention is All You Need》提出了 Transformer 模型。Transformer 彻底摒弃了循环结构,转而依赖 Attention 机制 来处理序列中的依赖关系,大幅提升了训练效率,并能更好地捕捉长距离依赖。

主要结构:
Transformer 的整体结构可以概括为编码器(Encoder)和解码器(Decoder)两大部分:

Encoder:由多个相同的编码器层(Encoder Layer)堆叠而成,每一层主要包含 多头自注意力(Multi-Head Self-Attention) 和 前馈网络(Feed-Forward Network)。
Decoder:与编码器类似,也堆叠了多层的解码器层(Decoder Layer)。解码器层包含三个主要部分:掩码多头自注意力(Masked Multi-Head Self-Attention)、**与编码器交互的多头注意力(Encoder-Decoder Attention)**以及 前馈网络。
优势:

能更高效地并行训练:由于不需要按时间步逐个地处理序列。
能更好地捕捉句子中远距离的依赖关系。
在 NLP 多个任务(翻译、问答、文本生成等)上有显著的效果提升。
2. 什么是 Attention
Attention 机制的动机:
在处理一句话时,通常并不是句子中所有词对当前输出预测都同等重要。例如,“我喜欢吃苹果”这句话中,如果要预测“吃”的后面那个词,就需要更多关注“苹果”,而不必太在意“我”。Attention 机制通过加权的方式,让模型自动学习“关注”句子中最相关的部分。

计算过程概览:
在 Transformer 中,一个 Attention 模块通常包含以下步骤:

将输入向量分别映射为 Query (Q)、Key (K)、Value (V)。
通过 Q 和 K 的点积(或其他度量)计算相似度,得到注意力分布(即每个单词对于当前 Query 的重要程度)。
将注意力分数与 V 相乘以加权输出,得到最终的注意力结果。
Self-Attention(自注意力):
在 Transformer 的 Encoder 或 Decoder 内部,每个单词都将自己当作 Query,与整句话中的所有单词(包含自己)进行 Key、Value 计算,从而捕捉全局上下文信息。

具体来说,句子中每个位置都会输出自己的 Q、K、V,然后进行点积计算。这样,网络能够了解一个词与其他所有词(甚至包括它自己)之间的关系。
Multi-Head Attention(多头注意力):
自注意力 只是 Attention 机制的一个核心操作。Transformer 并不只做一次自注意力计算,而是把 Q、K、V 分成多个子空间(即多个“头”,Heads),在每个子空间分别进行注意力计算,然后再将各子空间的结果拼接起来。这样做的好处是模型可以学习到不同角度的语义关系,提升表达能力。

Encoder-Decoder Attention:

解码器在生成输出时,除了需要关注解码器本身已有的输出序列(自注意力)外,还需要关注编码器输出的上下文表示(Encoder 输出),这就是 Encoder-Decoder Attention。
模型在生成下一个词时,通过这个注意力模块能够“查看”输入句子的每个词与当前要生成的目标词之间的关联。
3. 重点总结
Transformer 的核心特点:

不再依赖传统 RNN 或 CNN 结构,而是使用 Attention 完成序列到序列的映射。
通过自注意力(Self-Attention)模块能够同时关注序列中所有位置的依赖关系,让模型可以高效并行并捕捉长距离依赖。
模型结构由堆叠的编码器层和解码器层组成,形成高度模块化的设计。
Attention 的核心作用:

通过 Q-K-V 机制计算每个词对目标词的相关性,将最重要的上下文信息赋予更高的权重。
多头注意力能够从不同的投影空间提取信息,提高模型对语义的捕捉能力。
————————————————

1. 什么是 Transformer
背景:
在自然语言处理领域,早期常使用循环神经网络(RNN)及其变体(如 LSTM、GRU)来处理序列数据,如机器翻译、文本生成等任务。然而,RNN 结构存在以下问题:

随着序列长度增加,模型难以捕捉远距离词汇之间的关联,且训练会出现梯度消失或梯度爆炸等现象。
训练时难以进行大规模并行计算,速度较慢。
Transformer 的诞生:
2017 年,论文《Attention is All You Need》提出了 Transformer 模型。Transformer 彻底摒弃了循环结构,转而依赖 Attention 机制 来处理序列中的依赖关系,大幅提升了训练效率,并能更好地捕捉长距离依赖。

主要结构:
Transformer 的整体结构可以概括为编码器(Encoder)和解码器(Decoder)两大部分:

Encoder:由多个相同的编码器层(Encoder Layer)堆叠而成,每一层主要包含 多头自注意力(Multi-Head Self-Attention) 和 前馈网络(Feed-Forward Network)。
Decoder:与编码器类似,也堆叠了多层的解码器层(Decoder Layer)。解码器层包含三个主要部分:掩码多头自注意力(Masked Multi-Head Self-Attention)、**与编码器交互的多头注意力(Encoder-Decoder Attention)**以及 前馈网络。
优势:

能更高效地并行训练:由于不需要按时间步逐个地处理序列。
能更好地捕捉句子中远距离的依赖关系。
在 NLP 多个任务(翻译、问答、文本生成等)上有显著的效果提升。
2. 什么是 Attention
Attention 机制的动机:
在处理一句话时,通常并不是句子中所有词对当前输出预测都同等重要。例如,“我喜欢吃苹果”这句话中,如果要预测“吃”的后面那个词,就需要更多关注“苹果”,而不必太在意“我”。Attention 机制通过加权的方式,让模型自动学习“关注”句子中最相关的部分。

计算过程概览:
在 Transformer 中,一个 Attention 模块通常包含以下步骤:

将输入向量分别映射为 Query (Q)、Key (K)、Value (V)。
通过 Q 和 K 的点积(或其他度量)计算相似度,得到注意力分布(即每个单词对于当前 Query 的重要程度)。
将注意力分数与 V 相乘以加权输出,得到最终的注意力结果。
Self-Attention(自注意力):
在 Transformer 的 Encoder 或 Decoder 内部,每个单词都将自己当作 Query,与整句话中的所有单词(包含自己)进行 Key、Value 计算,从而捕捉全局上下文信息。

具体来说,句子中每个位置都会输出自己的 Q、K、V,然后进行点积计算。这样,网络能够了解一个词与其他所有词(甚至包括它自己)之间的关系。
Multi-Head Attention(多头注意力):
自注意力 只是 Attention 机制的一个核心操作。Transformer 并不只做一次自注意力计算,而是把 Q、K、V 分成多个子空间(即多个“头”,Heads),在每个子空间分别进行注意力计算,然后再将各子空间的结果拼接起来。这样做的好处是模型可以学习到不同角度的语义关系,提升表达能力。

Encoder-Decoder Attention:

解码器在生成输出时,除了需要关注解码器本身已有的输出序列(自注意力)外,还需要关注编码器输出的上下文表示(Encoder 输出),这就是 Encoder-Decoder Attention。
模型在生成下一个词时,通过这个注意力模块能够“查看”输入句子的每个词与当前要生成的目标词之间的关联。
3. 重点总结
Transformer 的核心特点:

不再依赖传统 RNN 或 CNN 结构,而是使用 Attention 完成序列到序列的映射。
通过自注意力(Self-Attention)模块能够同时关注序列中所有位置的依赖关系,让模型可以高效并行并捕捉长距离依赖。
模型结构由堆叠的编码器层和解码器层组成,形成高度模块化的设计。
Attention 的核心作用:

通过 Q-K-V 机制计算每个词对目标词的相关性,将最重要的上下文信息赋予更高的权重。
多头注意力能够从不同的投影空间提取信息,提高模型对语义的捕捉能力。
————————————————

1. 什么是 Transformer
背景:
在自然语言处理领域,早期常使用循环神经网络(RNN)及其变体(如 LSTM、GRU)来处理序列数据,如机器翻译、文本生成等任务。然而,RNN 结构存在以下问题:

随着序列长度增加,模型难以捕捉远距离词汇之间的关联,且训练会出现梯度消失或梯度爆炸等现象。
训练时难以进行大规模并行计算,速度较慢。
Transformer 的诞生:
2017 年,论文《Attention is All You Need》提出了 Transformer 模型。Transformer 彻底摒弃了循环结构,转而依赖 Attention 机制 来处理序列中的依赖关系,大幅提升了训练效率,并能更好地捕捉长距离依赖。

主要结构:
Transformer 的整体结构可以概括为编码器(Encoder)和解码器(Decoder)两大部分:

Encoder:由多个相同的编码器层(Encoder Layer)堆叠而成,每一层主要包含 多头自注意力(Multi-Head Self-Attention) 和 前馈网络(Feed-Forward Network)。
Decoder:与编码器类似,也堆叠了多层的解码器层(Decoder Layer)。解码器层包含三个主要部分:掩码多头自注意力(Masked Multi-Head Self-Attention)、**与编码器交互的多头注意力(Encoder-Decoder Attention)**以及 前馈网络。
优势:

能更高效地并行训练:由于不需要按时间步逐个地处理序列。
能更好地捕捉句子中远距离的依赖关系。
在 NLP 多个任务(翻译、问答、文本生成等)上有显著的效果提升。
2. 什么是 Attention
Attention 机制的动机:
在处理一句话时,通常并不是句子中所有词对当前输出预测都同等重要。例如,“我喜欢吃苹果”这句话中,如果要预测“吃”的后面那个词,就需要更多关注“苹果”,而不必太在意“我”。Attention 机制通过加权的方式,让模型自动学习“关注”句子中最相关的部分。

计算过程概览:
在 Transformer 中,一个 Attention 模块通常包含以下步骤:

将输入向量分别映射为 Query (Q)、Key (K)、Value (V)。
通过 Q 和 K 的点积(或其他度量)计算相似度,得到注意力分布(即每个单词对于当前 Query 的重要程度)。
将注意力分数与 V 相乘以加权输出,得到最终的注意力结果。
Self-Attention(自注意力):
在 Transformer 的 Encoder 或 Decoder 内部,每个单词都将自己当作 Query,与整句话中的所有单词(包含自己)进行 Key、Value 计算,从而捕捉全局上下文信息。

具体来说,句子中每个位置都会输出自己的 Q、K、V,然后进行点积计算。这样,网络能够了解一个词与其他所有词(甚至包括它自己)之间的关系。
Multi-Head Attention(多头注意力):
自注意力 只是 Attention 机制的一个核心操作。Transformer 并不只做一次自注意力计算,而是把 Q、K、V 分成多个子空间(即多个“头”,Heads),在每个子空间分别进行注意力计算,然后再将各子空间的结果拼接起来。这样做的好处是模型可以学习到不同角度的语义关系,提升表达能力。

Encoder-Decoder Attention:

解码器在生成输出时,除了需要关注解码器本身已有的输出序列(自注意力)外,还需要关注编码器输出的上下文表示(Encoder 输出),这就是 Encoder-Decoder Attention。
模型在生成下一个词时,通过这个注意力模块能够“查看”输入句子的每个词与当前要生成的目标词之间的关联。
3. 重点总结
Transformer 的核心特点:

不再依赖传统 RNN 或 CNN 结构,而是使用 Attention 完成序列到序列的映射。
通过自注意力(Self-Attention)模块能够同时关注序列中所有位置的依赖关系,让模型可以高效并行并捕捉长距离依赖。
模型结构由堆叠的编码器层和解码器层组成,形成高度模块化的设计。
Attention 的核心作用:

通过 Q-K-V 机制计算每个词对目标词的相关性,将最重要的上下文信息赋予更高的权重。
多头注意力能够从不同的投影空间提取信息,提高模型对语义的捕捉能力。
————————————————

1. 什么是 Transformer
背景:
在自然语言处理领域,早期常使用循环神经网络(RNN)及其变体(如 LSTM、GRU)来处理序列数据,如机器翻译、文本生成等任务。然而,RNN 结构存在以下问题:

随着序列长度增加,模型难以捕捉远距离词汇之间的关联,且训练会出现梯度消失或梯度爆炸等现象。
训练时难以进行大规模并行计算,速度较慢。
Transformer 的诞生:
2017 年,论文《Attention is All You Need》提出了 Transformer 模型。Transformer 彻底摒弃了循环结构,转而依赖 Attention 机制 来处理序列中的依赖关系,大幅提升了训练效率,并能更好地捕捉长距离依赖。

主要结构:
Transformer 的整体结构可以概括为编码器(Encoder)和解码器(Decoder)两大部分:

Encoder:由多个相同的编码器层(Encoder Layer)堆叠而成,每一层主要包含 多头自注意力(Multi-Head Self-Attention) 和 前馈网络(Feed-Forward Network)。
Decoder:与编码器类似,也堆叠了多层的解码器层(Decoder Layer)。解码器层包含三个主要部分:掩码多头自注意力(Masked Multi-Head Self-Attention)、**与编码器交互的多头注意力(Encoder-Decoder Attention)**以及 前馈网络。
优势:

能更高效地并行训练:由于不需要按时间步逐个地处理序列。
能更好地捕捉句子中远距离的依赖关系。
在 NLP 多个任务(翻译、问答、文本生成等)上有显著的效果提升。
2. 什么是 Attention
Attention 机制的动机:
在处理一句话时,通常并不是句子中所有词对当前输出预测都同等重要。例如,“我喜欢吃苹果”这句话中,如果要预测“吃”的后面那个词,就需要更多关注“苹果”,而不必太在意“我”。Attention 机制通过加权的方式,让模型自动学习“关注”句子中最相关的部分。

计算过程概览:
在 Transformer 中,一个 Attention 模块通常包含以下步骤:

将输入向量分别映射为 Query (Q)、Key (K)、Value (V)。
通过 Q 和 K 的点积(或其他度量)计算相似度,得到注意力分布(即每个单词对于当前 Query 的重要程度)。
将注意力分数与 V 相乘以加权输出,得到最终的注意力结果。
Self-Attention(自注意力):
在 Transformer 的 Encoder 或 Decoder 内部,每个单词都将自己当作 Query,与整句话中的所有单词(包含自己)进行 Key、Value 计算,从而捕捉全局上下文信息。

具体来说,句子中每个位置都会输出自己的 Q、K、V,然后进行点积计算。这样,网络能够了解一个词与其他所有词(甚至包括它自己)之间的关系。
Multi-Head Attention(多头注意力):
自注意力 只是 Attention 机制的一个核心操作。Transformer 并不只做一次自注意力计算,而是把 Q、K、V 分成多个子空间(即多个“头”,Heads),在每个子空间分别进行注意力计算,然后再将各子空间的结果拼接起来。这样做的好处是模型可以学习到不同角度的语义关系,提升表达能力。

Encoder-Decoder Attention:

解码器在生成输出时,除了需要关注解码器本身已有的输出序列(自注意力)外,还需要关注编码器输出的上下文表示(Encoder 输出),这就是 Encoder-Decoder Attention。
模型在生成下一个词时,通过这个注意力模块能够“查看”输入句子的每个词与当前要生成的目标词之间的关联。
3. 重点总结
Transformer 的核心特点:

不再依赖传统 RNN 或 CNN 结构,而是使用 Attention 完成序列到序列的映射。
通过自注意力(Self-Attention)模块能够同时关注序列中所有位置的依赖关系,让模型可以高效并行并捕捉长距离依赖。
模型结构由堆叠的编码器层和解码器层组成,形成高度模块化的设计。
Attention 的核心作用:

通过 Q-K-V 机制计算每个词对目标词的相关性,将最重要的上下文信息赋予更高的权重。
多头注意力能够从不同的投影空间提取信息,提高模型对语义的捕捉能力。
————————————————

总之,Transformer 是一种彻底基于 Attention 机制的神经网络结构,克服了 RNN 难以并行以及捕捉长距离依赖不足的缺点。Attention(尤其是自注意力)在其中扮演了最重要的角色,通过对不同词之间关联度的计算和加权,不仅显著提升了模型的性能,还极大加速了训练与推理过程。
接下来我会在我的这个专栏里详细解读一下Transformer的原理,以及常见的LLM是如何使用Transformer这个历史转折点一样的结构的。希望大家多多关注!
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/qq_31638535/article/details/144995596

### 如何入门 Transformer 模型 #### 学习路径规划 对于希望深入理解 Transformer 的初学者来说,建议按照以下结构化路径逐步推进: - **基础概念掌握** - 开始前需具备一定的机器学习基础知识以及神经网络的理解。 -attention mechanism)作为Transformer架构的核心特性之一,在编码器(Encoder)解码器(Decoder)之间起到桥梁作用[^1]。 - **经典模型研究** - 探索基于自注意力机制构建的经典Seq2seq模型,这有助于更好地理解后续更复杂的Transformers设计思路。 - 进一步深入了解完整的Transformer框架是如何通过堆叠多层编码器与解码器实现高效的信息传递特征提取功能。 - **实践操作训练** - 结合理论知识参与实际项目开发或实验练习,比如利用开源工具包如Hugging Face Transformers库快速搭建并测试简单的自然语言处理任务模型。 - 参考高质量的教学资源,例如由经验丰富的从业者提供的AI大模型入门指南、视频课程等材料可以加速理解应用过程[^2]。 #### 关键知识点详解 ##### Self-Attention Mechanism Self-Attention是一种允许输入序列中的每一个位置与其他所有位置关联起来的技术。它能够捕捉到不同时间步之间的依赖关系而不受距离限制,从而提高了对长期依赖性的建模能力。具体而言,该技术通过对齐向量Q(Query)、K(Key)V(Value),计算权重矩阵W,并据此调整原始表示形式以获得新的上下文感知表征。 ```python import torch.nn as nn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值