利用sklearn进行豆瓣电影评论的文本分类

该博客介绍了如何利用sklearn进行豆瓣电影评论的文本分类,包括数据清洗、读取与分词、TF-IDF计算以及模型拟合。作者通过清洗数据,使用jieba分词,然后利用TF-IDF转换为向量,最后采用逻辑回归模型进行训练,并调整正则化强度C值以优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    在之前,我已经在豆瓣电影top250中爬取了约6w条好评和差评,在此我们来利用这些数据,进行入门级别的文本分类。

一 数据清洗

    数据在豆瓣电影top250提供下载,下载后能看到6W条好评和差评,由于爬取时未能完全清除符号,导致一部分毫无意义的颜文字评论混入其中,为了清除这些数据,我在(仅当数据量较小的情况下)excel中替换掉了肉眼可见的一些符号,然后转换成xlsx格式(csv中出现中文时bug太多,在此放弃使用csv格式)。如果数据量较大时,请使用正则表达式进行数据清洗。


二 数据的读取与分词

    在此提供清洗完毕的数据下载,您可以下载后自行尝试。

    使用xlrd库进行xlsx文件的读取,读取完毕后使用jieba分词工具进行分词。

import numpy as np
impor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值