04 朴素贝叶斯法——读书笔记

本文深入浅出地解析了朴素贝叶斯算法的基本原理,包括先验概率、条件概率、后验概率及似然概率的概念。阐述了贝叶斯定理的应用,介绍了朴素贝叶斯法的分类过程,及其在条件独立性假设下的简化计算方法。同时,讨论了后验概率最大化的含义,并详细说明了朴素贝叶斯算法的参数估计方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、相关概念:

  1. 先验概率:
    是指事件发生前的预判概念,也可以说是“因”发生的概率,即表示为 P(X)。
  2. 条件概率:
    是指事件发生后求得反向条件概率,也可以说是在“因”的条件下,“果”发生的概率,即表示为 P(Y|X)。
  3. 后验概率:
    一个事件发生后导致另一个事件发生的概率,也可以说是在“果”出现的情况下,是什么“因”导致的概率,即表示为P(X|Y)。
  4. 似然概率:
    类似于条件概率,即“因”的条件下,“果”发生的概率,即表示为 P(Y|X)。
  5. 贝叶斯定理:(又称条件概率定理)
    P(Y∣X)=P(X∣Y)∗P(Y)P(X)P(Y|X)=\frac{P(X|Y)*P(Y)}{P(X)}P(YX)=P(X)P(XY)P(Y)

二、朴素贝叶斯法概述:

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于该模型,对于给定的输入xxx,利用贝叶斯定理求出后验概率最大的输出yyy.

  1. 先验概率分布、条件概率分布、联合概率分布:
    已知输入空间 χ⫅Rn\chi \subseteqq R^{n}χRnnnn 维向量的集合,输出空间为类标记集合 γ={c1,c2,...,cK}\gamma =\begin{Bmatrix} c_{1},c_{2},...,c_{K} \end{Bmatrix}γ={c1,c2,...,cK} 。输入为特征向量 xxx,输出为类标记 yyy。 训练数据集为:T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)}T=\begin{Bmatrix} (x_{1},y_{1}),(x_{2},y_{2}),(x_{3},y_{3}),...,(x_{N},y_{N}) \end{Bmatrix}T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)}
    (1)先验概率分布:
    P(Y=ck), k=1,2,3,...,KP(Y=c_{k}),\: k=1,2,3,...,KP(Y=ck),k=1,2,3,...,K
    (2)条件概率分布:
    P(X=x∣Y=ck)=P(X(1)=x(1),...,X(n)=x(n)∣Y=ck), k=1,2,...,KP(X=x|Y=c_{k})=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=c_{k}),\:k=1,2,...,KP(X=xY=ck)=P(X(1)=x(1),...,X(n)=x(n)Y=ck),k=1,2,...,K
    (3)联合概率分布:
    朴素贝叶斯法通过训练数据集学习到联合概率分布P(X,Y)P(X,Y)P(X,Y).
    P(X,Y)=P(Y=ck)P(X=x∣Y=ck), k=1,2,...,KP(X,Y)=P(Y=c_{k})P(X=x|Y=c_{k}),\:k=1,2,...,KP(X,Y)=P(Y=ck)P(X=xY=ck),k=1,2,...,K
    (4)后验概率分布:
    P(Y=ck∣X=x)=P(X=x∣Y=ck)∗P(Y=ck)∑kP(X=x∣Y=ck)∗P(Y=ck)P(Y=c_{k}|X=x)=\frac{P(X=x|Y=c_{k})*P(Y=c_{k})}{\sum_{k}{}P(X=x|Y=c_{k})*P(Y=c_{k})}P(Y=ckX=x)=kP(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)
  2. 条件独立性假设:
    由于条件概率分布具有指数级数量的参数,其估计实际是不可行的。事实上,假设 x(j)x^{(j)}x(j) 可取值 SjS_{j}Sj个,其中 j=1,2,...,nj=1,2,...,nj=1,2,...,nYYY 可取值有KKK个,则联合分布概率的参数个数为:K∏j=1nSjK\prod_{j=1}^{n}S_{j}Kj=1nSj.
    所以,朴素贝叶斯法对条件概率分布作了条件独立性的假设,这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。条件独立性假设是指:
    P(X=x∣Y=ck)=P(X(1)=x(1),...,X(n)=x(n)∣Y=ck)P(X=x|Y=c_{k})=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=c_{k})P(X=xY=ck)=P(X(1)=x(1),...,X(n)=x(n)Y=ck)
    =∏j=1nP(X(j)=x(j)∣Y=ck)=\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_{k})=j=1nP(X(j)=x(j)Y=ck)
    在条件独立性假设条件下:
    (1)条件概率分布:
    P(X=x∣Y=ck)=P(X(1)=x(1),...,X(n)=x(n)∣Y=ck)P(X=x|Y=c_{k})=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=c_{k})P(X=xY=ck)=P(X(1)=x(1),...,X(n)=x(n)Y=ck)
    =∏j=1nP(X(j)=x(j)∣Y=ck)=\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_{k})=j=1nP(X(j)=x(j)Y=ck)
    (2)后验概率分布:
    P(Y=ck∣X=x)=∏jP(X(j)=x(j)∣Y=ck)∗P(Y=ck)∑kP(Y=ck)∗∏jP(X(j)=x(j)∣Y=ck)P(Y=c_{k}|X=x)=\frac{\prod_{j}^{}P(X^{(j)}=x^{(j)}|Y=c_{k})*P(Y=c_{k})}{\sum_{k}{}P(Y=c_{k})*\prod_{j}^{}P(X^{(j)}=x^{(j)}|Y=c_{k})}P(Y=ckX=x)=kP(Y=ck)jP(X(j)=x(j)Y=ck)jP(X(j)=x(j)Y=ck)P(Y=ck)
    (3)联合概率分布:

y=arg maxckP(Y=ck)∗∏jP(X(j)=x(j)∣Y=ck).y=arg \: max_{c_{k}}P(Y=c_{k})*\prod_{j}^{}P(X^{(j)}=x^{(j)}|Y=c_{k}) .y=argmaxckP(Y=ck)jP(X(j)=x(j)Y=ck).

三、后验概率最大化的含义:

朴素贝叶斯法将实例分到后验概率最大的类中。这等价于期望风险最小化。假设选择0-1损失函数:
L(Y,f(X))={1,Y≠f(X)0,Y=f(X)}L(Y,f(X))=\begin{Bmatrix} 1, &Y\neq f(X) \\ 0,& Y= f(X) \end{Bmatrix}L(Y,f(X))={1,0,Y=f(X)Y=f(X)}
为了使期望风险最小化,只需要对X=xX=xX=x逐个极小化,根据期望风险最小化准则就得到了后验概率最大化准则:
y=arg maxckP(ck∣X=x)y=arg \: max_{c_{k}}P(c_{k}|X=x)y=argmaxckP(ckX=x)
即朴素贝叶斯法所采用的原理。

四、朴素贝叶斯算法的定义:

输入:训练集 T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)}T=\begin{Bmatrix} (x_{1},y_{1}),(x_{2},y_{2}),(x_{3},y_{3}),...,(x_{N},y_{N}) \end{Bmatrix}T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)};实例 xxx
输出:实例 xxx 的分类。
(1)计算先验概率和条件概率:
P(Y=ck)=∑i=1NI(yi=ck)N, k=1,2,3,...,KP(Y=c_{k})=\frac{\sum_{i=1}^{N}I(y_{i}=c_{k})}{N},\: k=1,2,3,...,KP(Y=ck)=Ni=1NI(yi=ck),k=1,2,3,...,K
P(X(j)=ajl∣Y=ck)=∑i=1NI(xi(j)=ajl,yi=ck)∑i=1NI(yi=ck), k=1,2,3,...,K;j=1,2,...,n;l=1,2,...,SjP(X^{(j)}=a_{jl}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{jl},y_{i}=c_{k})}{\sum_{i=1}^{N}I(y_{i}=c_{k})},\: k=1,2,3,...,K;j=1,2,...,n;l=1,2,...,S_{j}P(X(j)=ajlY=ck)=i=1NI(yi=ck)i=1NI(xi(j)=ajlyi=ck),k=1,2,3,...,Kj=1,2,...,nl=1,2,...,Sj
(2)对给出的实例x={x(1),x(2),...,x(n)}x=\begin{Bmatrix} x^{(1)},x^{(2)},...,x^{(n)} \end{Bmatrix}x={x(1),x(2),...,x(n)}计算联合概率分布:
P(Y=ck)∗∏j=1nP(X(j)=x(j)∣Y=ck), k=1,2,3,...,KP(Y=c_{k})*\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_{k}),\: k=1,2,3,...,KP(Y=ck)j=1nP(X(j)=x(j)Y=ck),k=1,2,3,...,K
(3)根据最大值确定实例 xxx的类:
y=arg maxckP(Y=ck)∗∏jP(X(j)=x(j)∣Y=ck).y=arg \: max_{c_{k}}P(Y=c_{k})*\prod_{j}^{}P(X^{(j)}=x^{(j)}|Y=c_{k}) .y=argmaxckP(Y=ck)jP(X(j)=x(j)Y=ck).

五、朴素贝叶斯法的参数估计:

  1. 极大似然估计:
    (1)先验概率的极大似然估计:
    P(Y=ck)=∑i=1NI(yi=ck)N, k=1,2,3,...,KP(Y=c_{k})=\frac{\sum_{i=1}^{N}I(y_{i}=c_{k})}{N},\: k=1,2,3,...,KP(Y=ck)=Ni=1NI(yi=ck),k=1,2,3,...,K
    (2)条件概率的极大似然估计:
    P(X(j)=ajl∣Y=ck)=∑i=1NI(xi(j)=ajl,yi=ck)N, k=1,2,3,...,K;j=1,2,...,n;l=1,2,...,SjP(X^{(j)}=a_{jl}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{jl},y_{i}=c_{k})}{N},\: k=1,2,3,...,K;j=1,2,...,n;l=1,2,...,S_{j}P(X(j)=ajlY=ck)=Ni=1NI(xi(j)=ajlyi=ck),k=1,2,3,...,Kj=1,2,...,nl=1,2,...,Sj
  2. 贝叶斯估计:
    (1)贝叶斯估计的极大似然估计:
    P(Y=ck)=∑i=1NI(yi=ck)+λN+Kλ, k=1,2,3,...,KP(Y=c_{k})=\frac{\sum_{i=1}^{N}I(y_{i}=c_{k})+\lambda }{N+K\lambda },\: k=1,2,3,...,KP(Y=ck)=N+Kλi=1NI(yi=ck)+λ,k=1,2,3,...,K
    (2)贝叶斯估计的极大似然估计:
    P(X(j)=ajl∣Y=ck)=∑i=1NI(xi(j)=ajl,yi=ck)+λ∑i=1NI(yi=ck)+Sjλ, k=1,2,3,...,K;j=1,2,...,n;l=1,2,...,SjP(X^{(j)}=a_{jl}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{jl},y_{i}=c_{k})+\lambda }{\sum_{i=1}^{N}I(y_{i}=c_{k})+S_{j}\lambda },\: k=1,2,3,...,K;j=1,2,...,n;l=1,2,...,S_{j}P(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajlyi=ck)+λ,k=1,2,3,...,Kj=1,2,...,nl=1,2,...,Sj
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值