见:P2084 进制转换 - 洛谷
题目描述
今天小明学会了进制转换,比如 (10101)2,那么它的十进制表示的式子就是 :
那么请你编程实现,将一个 M 进制的数 N 转换成十进制表示的式子。
注意:当系数为 0 时,该单项式要省略。
输入格式
两个整数,M 和 N,中间用空格隔开。
输出格式
共一行,一个十进制表示的式子。
输入输出样例
in:
2 10101
out:
1*2^4+1*2^2+1*2^0
说明/提示
对于 100% 的数据,1<M<10,N 的位数不超过 1000 且均为正整数。
第一步
code
#include <bits/stdc++.h>
using namespace std;
int main() {
bool flag=false;
int p;
string s;
cin>>p>>s;
for(int i=0;i<s.size();i++){
if(s[i]!='0'){
if(flag!=false)cout<<"+";
cout<<s[i]<<"*"<<p<<"^"<<s.size()-i-1;
flag=true;
}
}
return 0;
}
第二步
分析
摘要
本文深入研究了一种基于 C++ 的进制多项式展开算法,该算法能够将任意进制的整数表示为其对应的多项式展开形式。通过对输入的进制数和整数字符串进行处理,算法能够生成标准的多项式表达式,为数值计算、编码理论和计算机科学中的相关问题提供了有效的解决方案。本文详细阐述了算法的设计思路、实现细节、性能分析以及优化方向,并通过实例验证了算法的正确性和有效性。
1. 引言
在计算机科学和数学领域,进制转换和多项式展开是两个重要的基础问题。进制转换是将一个数从一种进制表示转换为另一种进制表示的过程,而多项式展开则是将一个数表示为基数的幂次和的形式。例如,十进制数 25 可以表示为二进制数 11001,也可以表示为多项式展开形式:2×10¹ + 5×10⁰。
进制多项式展开在许多领域有着广泛的应用,如密码学、编码理论、计算机体系结构等。在密码学中,大整数的多项式展开是 RSA 等加密算法的基础;在编码理论中,多项式展开可以用于构造循环码和 BCH 码等纠错码;在计算机体系结构中,多项式展开可以用于优化乘法和除法运算。
本文提出了一种高效的进制多项式展开算法,该算法能够将任意进制的整数转换为其对应的多项式展开形式。算法采用 C++ 语言实现,具有高效、简洁和易于理解的特点。
2. 相关工作
进制转换和多项式展开是计算机科学中的经典问题,已有许多相关的研究和实现。传统的进制转换算法通常基于除基取余法,即将十进制数不断除以目标进制的基数,取余数作为低位,直到商为 0。这种方法适用于十进制到其他进制的转换,但对于任意进制之间的转换并不直接适用。
在多项式展开方面,常见的方法是将数值分解为各个位上的数字,然后根据位权计算对应的幂次项。这种方法简单直观,但在处理大整数时可能会遇到性能问题。
近年来,随着计算机性能的提升和算法研究的深入,出现了许多针对特定应用场景的优化算法。例如,在密码学中,为了处理非常大的整数,研究者提出了基于快速傅里叶变换 (FFT) 的多项式乘法算法,大大提高了大整数运算的效率。
然而,对于一般的进制多项式展开问题,仍然缺乏一种通用、高效且易于实现的解决方案。本文提出的算法正是针对这一问题的一个有效尝试。
3. 算法设计与实现
3.1 算法设计思路
本文提出的进制多项式展开算法的核心思想是:将输入的整数字符串按位分解,对每一位进行检查,如果该位非零,则生成对应的多项式项,最终将所有非零项连接成完整的多项式表达式。
具体来说,算法的设计思路如下:
- 读取输入的进制数 p 和整数字符串 s。
- 遍历字符串 s 中的每一个字符。
- 对于每一个字符,如果它表示的数字非零,则生成一个多项式项,该项的系数为该数字,底数为进制数 p,指数为该位的权值。
- 将所有生成的多项式项按顺序连接起来,中间用加号分隔,得到最终的多项式表达式。
3.2 算法实现
下面是基于 C++ 的进制多项式展开算法的实现代码:
#include <iostream>
#include <string>
using namespace std;
int main() {
int p;
string s;
cin >> p >> s;
bool firstTermPrinted = false;
const int n = s.size();
for (int i = 0; i < n; ++i) {
if (s[i] != '0') {
if (firstTermPrinted) {
cout << "+";
}
cout << s[i] << "*" << p << "^" << (n - i - 1);
firstTermPrinted = true;
}
}
return 0;
}
3.3 算法详细解释(续)
-
循环处理每一位(续):
- 对于每个字符,检查其是否为非零字符(即不等于 '0')。这是因为在多项式展开中,系数为 0 的项不需要显示。
- 如果当前字符是非零字符,则进行以下操作:
- 检查
firstTermPrinted
标志:如果已经输出过非零项(即firstTermPrinted
为true
),则在当前项前输出一个加号+
。 - 输出当前项的展开形式,格式为
数字*进制^指数
。其中,数字是当前字符本身,进制是输入的p
,指数由n - i - 1
计算得出,这里n
是字符串的长度,i
是当前字符的索引。 - 将
firstTermPrinted
标志设置为true
,表示已经输出了至少一个非零项。
- 检查
-
输出结果:
- 循环结束后,所有非零项都已按正确的格式输出,形成了完整的多项式展开式。
4. 算法分析
4.1 正确性分析
该算法的正确性基于以下几点:
- 位权对应关系:对于一个 n 位的 p 进制数,从左到右第 i 位的位权为 p^(n-i-1)。算法通过遍历字符串并计算
n - i - 1
准确地得到了每个位的指数。 - 非零项处理:算法只处理非零字符对应的位,确保了展开式中不会出现系数为 0 的无效项。
- 加号位置:通过
firstTermPrinted
标志,算法确保了第一个非零项前没有加号,而后续的非零项前都有加号,符合数学表达式的规范。
4.2 时间复杂度分析
算法的时间复杂度为 O (n),其中 n 是输入字符串的长度。这是因为算法只需要对输入字符串进行一次线性遍历,对于每个字符的处理都是常数时间操作。
4.3 空间复杂度分析
算法的空间复杂度为 O (1),即常数空间。这是因为算法只使用了固定的额外变量(如p
、s
、flag
、n
等),这些变量的空间需求不随输入字符串长度的增加而增加。
5. 实例验证
为了验证算法的正确性,我们提供以下实例:
实例 1:
- 输入:
2 101
- 输出:
1*2^2+1*2^0
- 解释:二进制数 101 转换为十进制为 1×2² + 0×2¹ + 1×2⁰ = 4 + 0 + 1 = 5,展开式正确。
实例 2:
- 输入:
3 210
- 输出:
2*3^2+1*3^1
- 解释:三进制数 210 转换为十进制为 2×3² + 1×3¹ + 0×3⁰ = 18 + 3 + 0 = 21,展开式正确。
实例 3:
- 输入:
10 1234
- 输出:
1*10^3+2*10^2+3*10^1+4*10^0
- 解释:十进制数 1234 展开为 1×10³ + 2×10² + 3×10¹ + 4×10⁰,展开式正确。
6. 算法优化与扩展
6.1 输入验证优化
当前算法没有对输入进行充分验证,可能导致程序在面对非法输入时行为异常。可以添加以下验证:
- 检查进制
p
是否大于等于 2。 - 检查输入字符串
s
中的每个字符是否都是有效的p
进制数字。例如,对于二进制(p=2),字符只能是 '0' 和 '1';对于十进制(p=10),字符只能是 '0' 到 '9'。
6.2 性能优化
对于非常大的输入字符串,可以考虑以下优化:
- 减少函数调用:在循环中使用预计算的字符串长度
n
,而不是每次都调用s.size()
。 - 字符串构建优化:对于特别大的输出,可以考虑使用
stringstream
代替直接输出,以减少 I/O 操作次数。
6.3 功能扩展
算法可以扩展以支持更多功能:
- 处理负数:在输入字符串前添加符号位处理,输出时保留负号。
- 支持小数:扩展算法以处理小数点,分别展开整数部分和小数部分。
- 任意进制转换:将算法扩展为可以在任意两种进制之间进行转换,而不仅仅是展开为多项式。
7. 结论
本文提出了一种基于 C++ 的进制多项式展开算法,该算法能够高效地将任意进制的整数表示为其对应的多项式展开形式。算法通过线性遍历输入字符串,识别非零位并生成对应的多项式项,具有 O (n) 的时间复杂度和 O (1) 的空间复杂度,适用于大多数实际应用场景。
通过实例验证,我们证明了算法的正确性。同时,我们也讨论了算法的优化方向和扩展功能,为算法在更复杂场景下的应用提供了思路。
该算法在数值计算、编码理论、密码学等领域有着潜在的应用价值,特别是在需要处理大整数和高进制数的场景中。
参考文献
[1] 高德纳。计算机程序设计艺术(第 2 卷):半数值算法。国防工业出版社,2002.
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. 算法导论(第 3 版). 机械工业出版社,2012.
[3] Bjarne Stroustrup. C++ 程序设计语言(第 4 版). 机械工业出版社,2013.
[4] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms. Addison-Wesley, 1997.
[5] Thomas H. Cormen, et al. Introduction to Algorithms, Third Edition. MIT Press, 2009.