
深度学习实验
文章平均质量分 87
本专栏旨在帮助读者由浅入深地掌握深度学习实验的关键概念和技术。我们从PyTorch基本操作开始,让读者快速上手这一流行的深度学习框架。随后,逐步深入前馈神经网络、卷积神经网络,以及循环神经网络的原理与实践。不仅适合初学者,对有经验的研究者也有一定参考价值。希望通过本专栏,读者能够更扎实地理解深度学习
沐风—云端行者
够不着吧?左脚踩右脚上试试……
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【TensorFlow深度学习】完整项目案例:从零搭建自然语言问答系统
通过上述步骤,我们构建了一个基本的自然语言问答系统。虽然这是一个简化的示例,但它展示了从数据预处理到模型应用的完整流程。随着技术的不断进步和模型的进一步优化,问答系统将在教育、客服、搜索引擎等多个领域发挥越来越重要的作用。希望本文能激发你对自然语言处理的兴趣,并为你的项目提供一定的参考和启发。原创 2024-06-25 07:00:00 · 359 阅读 · 0 评论 -
【TensorFlow深度学习】TensorFlow与PyTorch框架间的异同对比
PyTorch的即时执行模式降低了初学者的入门门槛,而TensorFlow的静态图模式在大规模部署和优化方面更具优势。原创 2024-06-22 07:00:00 · 307 阅读 · 0 评论 -
【TensorFlow深度学习】开源社区支持与GitHub上贡献代码的流程
加入开源社区,贡献于GitHub,是每位开发者成长道路上宝贵的财富。它不仅能够提升技术能力,更是一种开放思维和协作精神的体现。遵循上述流程,你将逐步成长为开源社区的活跃分子,与全球开发者一道,共同推动技术的进步与创新。记住,每一次贡献,无论大小,都是对开源世界的一份宝贵礼物。原创 2024-06-21 07:15:00 · 383 阅读 · 0 评论 -
【TensorFlow深度学习】量化压缩技术在降低模型体积中的应用
量化压缩技术是现代深度学习模型部署不可或缺的一部分,它在确保模型性能的同时,大大降低了部署门槛,使得复杂的AI应用得以在各种设备上普及。随着技术的进步,未来的量化策略将会更加智能化、自动化,进一步推动AI技术的广泛应用。通过持续探索和优化,我们可以期待在不久的将来,量化技术将为AI模型的轻量化、高效化提供更强有力的支持。原创 2024-06-21 07:00:00 · 606 阅读 · 0 评论 -
【TensorFlow深度学习】异常检测与诊断:TensorFlow在故障预测中的应用
TensorFlow不仅为研究人员和开发者提供了强大的机器学习工具,也为工业界带来了先进的故障预测解决方案。通过本篇介绍的流程,我们展示了如何运用TensorFlow构建时序异常检测模型,这对于推动工业智能化、提升生产效率具有重要意义。未来,随着算法和硬件技术的不断进步,异常检测与诊断的实时性、准确性将得到更大提升,为工业4.0时代保驾护航。原创 2024-06-20 10:34:59 · 467 阅读 · 0 评论 -
【TensorFlow深度学习】在深度学习项目中实施迁移学习策略
迁移学习的核心思想是利用一个任务上学习到的特征或模型参数,帮助另一个相关但不完全相同的任务的学习。减少训练时间和计算资源:预训练模型已经学习到丰富的特征表示,无需从头开始训练。提高模型性能:尤其是在数据有限的情况下,迁移学习能够提升模型在新任务上的表现。促进领域适应性:使模型能够更好地适用于特定领域的数据。迁移学习是现代深度学习不可或缺的一部分,它为我们提供了快速构建高性能模型的捷径。通过上述实战代码示例,您可以直观地理解如何在自己的项目中应用迁移学习策略。原创 2024-06-20 10:18:09 · 559 阅读 · 0 评论 -
【TensorFlow深度学习】如何处理不平衡数据集与欠采样、过采样技术
处理不平衡数据集是机器学习实践中的一项基础且关键的任务。通过合理运用欠采样、过采样以及它们的组合策略,不仅可以显著改善模型对少数类的识别能力,还能增强模型的整体泛化性能。实践证明,针对不同的应用场景和数据特性,灵活选择和调整采样策略,是提升模型效果的有效途径。随着技术的不断进步,更多先进的处理不平衡数据的技术将会涌现,为AI领域带来更加精准和全面的解决方案。原创 2024-06-18 07:00:00 · 479 阅读 · 0 评论 -
【TensorFlow深度学习】分布式深度学习:数据并行与模型并行
分布式深度学习通过数据并行与模型并行策略,打破了单机资源的限制,为构建更大、更复杂的模型开辟了道路。掌握这些技术不仅能够加速研究进程,还能推动人工智能技术的边界。然而,实现高效的分布式训练还需综合考虑硬件配置、网络架构、数据分布等因素,这是一门深奥且充满挑战的艺术。希望通过本文的介绍,能激发你对分布式深度学习更深层次的兴趣和探索。原创 2024-06-16 07:15:00 · 235 阅读 · 0 评论 -
【本地大模型】本地部署Llama3模型的极简教程
Ollama是一个为本地运行开源大型语言模型而设计的简化工具。它通过将模型权重、配置和数据集整合到一个由Modelfile管理的统一包中,极大地简化了LLM的部署过程。Ollama 支持各种 LLM。可以在官网查看相关信息:https://ollama.com/。本文提供了一个关于如何在本地部署和运行Llama3模型的极简教程,并展示了如何结合open-webui来交互和解析本地文档。通过Ollama工具,无论是MacOS、Linux还是Windows用户,都可以轻松地体验到这一强大的语言模型。原创 2024-04-22 08:15:00 · 2414 阅读 · 0 评论 -
【机器视觉实验】机器视觉实验四——基于knn的场景图像检索、基于SVM的人脸图像识别
(1) 编程实现基于knn的场景图像检索 a) 至少实现三种特征组合进行检索;b) 使用recall与precision分析不同特征组合对检索精度的影响。颜色直方图:颜色直方图是一种描述图像颜色分布的特征。它通过计算图像中每个像素颜色的频率来生成直方图。SIFT:SIFT(尺度不变特征变换)是一种(2) 实现基于SVM的人脸图像识别a) 准备一张含有有自己照片的图片,并拍摄自己的人脸图片集;b) 训练SVM人脸分类器c) 实现基于滑动窗口的人脸检测算法; d) 识别出照片中的自己的人脸图像。原创 2024-01-27 20:46:10 · 521 阅读 · 0 评论 -
【微调大模型】如何利用开源大模型,微调出一个自己大模型
微调(Fine-tuning)是一种将预训练模型应用于特定任务的方法。通过微调,我们可以让预训练模型学习特定任务的参数,从而在新的任务上获得更好的性能。与从头开始训练模型相比,微调可以大大节省计算资源和时间成本。原创 2024-01-26 17:46:45 · 2202 阅读 · 0 评论 -
【机器学习】机器学习上机作业决策上述算法
利用所学知识,使用决策树实现Iris鸢尾花数据集分类任务。Iris鸢尾花数|据集:包含花萼长度、花萼宽度、花瓣长度、花瓣宽度四个属性,用于预测鸢尾花种类,标签0、1、2分别表示山鸢尾、变色鸢尾、维吉尼亚鸢尾。原创 2024-01-12 16:00:08 · 309 阅读 · 0 评论 -
【机器学习】机器学习上机作业聚类算法
自编代码实现C均值聚类和FCM聚类,在“IRIS数据集(鸢尾花数据集)”上进行实验,验证所编代码是否正确,并计算准确率。Iris鸢尾花数|据集:包含花萼长度、花萼宽度、花瓣长度、花瓣宽度四个属性,用于预测鸢尾花种类,标签0、1、2分别表示山鸢尾、变色鸢尾、维吉尼亚鸢尾。原创 2024-01-12 15:54:47 · 645 阅读 · 0 评论 -
【机器视觉】机器视觉实验一——图像边缘检测
1.读取文件并且将图片转为8bit;完成图像的拼接;图像框选。原创 2024-01-09 23:34:35 · 797 阅读 · 0 评论 -
【机器视觉】机器视觉实验二——图像分割基于颜色特征&基于纹理特征
其中:colorLabelIm和textureLabelIm是h*w的矩阵,分别表示基于颜色和基于纹理的分割区域的标签。而numColorRegion和numTextRegions 分别表示上述两种特征类型指定的理想分割数目,其他的参数如同以上所定义的。原创 2024-01-08 15:27:51 · 1202 阅读 · 0 评论 -
【深度学习】深度学习大作业——出租车流量预测
车流量预测任务是一个回归任务,旨在根据区域历史的车流量情况来预测其未来某一段时间的车流量情况。使用的数据为纽约市出租车流量数据。输入为纽约市各区域的历史车流量时间序列,输出为对应各区域的未来车流量的预测值。纽约出租车流量数据集,时间跨度为从2015年1月1日到2015年3月1日。数据处理成为网格流量数据,时间间隔设定为30分钟。后20天数据被划定为测试集,其余数据为训练集。数据格式:以训练集为例,其shape=(1920*10*20*2) 代表有1920个时间段,10*20个区域,2个特征分别为区域的入流原创 2024-01-08 10:44:14 · 4471 阅读 · 4 评论 -
【深度学习】深度学习实验四——循环神经网络(RNN)、dataloader、长短期记忆网络(LSTM)、门控循环单元(GRU)、超参数对比
分别采用手动方式以及调用接口方式实现RNN、LSTM和GRU,并在至少一种数据集上进行实验。从训练时间、预测精度、Loss变化等角度对比分析RNN、LSTM和GRU在相同数据集上的实验结果原创 2023-10-15 23:21:25 · 3286 阅读 · 1 评论 -
【深度学习】深度学习实验三——二维卷积实验、超参数对比分析(包括卷积层数、卷积核大小、batchsize、lr等)、经典模型AlexNet、空洞卷积实验、dilation、残差网络实验、退化、残差块
二维卷积实验(1)手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示)(2)使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、 预测精度、Loss变化等角度分析实验结果(最好使用图表展示)。(3)不同超参数的对比分析(包括卷积层数、卷积核大小、batchsize、lr等)选其中至少1-2个进 行分析。空洞卷积实验(1)使用torch.nn实现空洞卷积,要求dilation满足HDC条件(如1,2,5)且原创 2023-10-11 23:07:14 · 1700 阅读 · 3 评论 -
【深度学习】深度学习实验二——前馈神经网络解决上述回归、二分类、多分类、激活函数、优化器、正则化、dropout、早停机制
手动实现前馈神经网络解决上述回归、二分类、多分类问题分析实验结果并绘制训练集和测试集的loss曲线。原理介绍:回归问题使用的损失函数为平方损失函数,二分类问题使用的损失函数为nn.BCEloss函数,多分类问题使用的损失函数为交叉熵损失函数nn.CrossEntropyLoss。原创 2023-10-10 16:19:55 · 3085 阅读 · 1 评论 -
【深度学习】深度学习实验一——PyTorch基本操作、Tensor、Logistic 回归、 实现softmax、数据集上进行训练和测试
了解tensor 及其相关方法的使用,了解求导机制。原创 2023-07-25 02:58:46 · 1408 阅读 · 0 评论