redis面试题总结

转自:
http://blog.csdn.net/zdp072/article/details/50991116
http://www.100mian.com/mianshi/dba/37381.html

1. 使用redis有哪些好处?

(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
(2) 支持丰富数据类型,支持string,list,set,sorted set,hash
(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

2. redis相比memcached有哪些优势?

(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
(2) redis的速度比memcached快很多
(3) redis可以持久化其数据

3. Memcache与Redis的区别都有哪些?

1)、存储方式
Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。
Redis有部份存在硬盘上,这样能保证数据的持久性。
2)、数据支持类型
Memcache对数据类型支持相对简单。
Redis有复杂的数据类型。
3)、使用底层模型不同
它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。
Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

4. redis常见性能问题和解决方案:

(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
(4) 尽量避免在压力很大的主库上增加从库
(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

5. mySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据

相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据

6. 请用Redis和任意语言实现一段恶意登录保护的代码,限制1小时内每用户Id最多只能登录5次。具体登录函数或功能用空函数即可,不用详细写出。

用列表实现:列表中每个元素代表登陆时间,只要最后的第5次登陆时间和现在时间差不超过1小时就禁止登陆.用Python写的代码如下:

#!/usr/bin/env python3
import redis  
import sys  
import time

r = redis.StrictRedis(host=’127.0.0.1′, port=6379, db=0)  
try:  
    id = sys.argv[1]
except:  
    print(‘input argument error’)
    sys.exit(0)

if r.llen(id) >= 5 and time.time() – float(r.lindex(id, 4)) <= 3600:  
    print(“you are forbidden logining”)
else:  
    print(‘you are allowed to login’)
    r.lpush(id, time.time())
    # login_func()
<think>好的,用户希望获取关于Redis的高频面试题汇总及解析。我需要结合之前提供的Spring面试问题结构,并参考用户提供的三个引用内容来组织回答。首先,我需要确认用户提供的引用内容中的关键点,然后按照逻辑分类整理。 首先,引用[1]中提到了Redis缓存问题(穿透、击穿、雪崩)、持久化机制、过期删除策略、内存淘汰策略、双写一致性、Redission分布式锁、高可用策略(主从复制、哨兵模式、分片集群)、以及性能相关的问题(单线程为何高效、I/O模型)。引用[2]详细解释了Redis单线程的原因和工作流程,引用[3]则介绍了Redisson的功能。 接下来,我需要将这些内容分门别类,确保结构清晰。比如分为缓存问题、持久化、内存管理、分布式锁、高可用、性能优化等部分。每个部分需要包含问题描述、原因、解决方案,并适当引用提供的引用内容。 同时,用户之前的Spring回答结构使用了核心机制、IoC、AOP等分类,我可以模仿这种结构,但根据Redis的特点调整。例如,分为缓存问题、持久化机制、内存管理、分布式锁、高可用架构、性能优化等。 需要注意每个问题要简明扼要,给出关键点和解决方案,同时添加引用标记。例如,在解释缓存穿透时,引用[1]中的解决方案,如布隆过滤器和空值缓存。在讨论单线程高效原因时,引用[2]中的解释,并结合I/O多路复用模型。 另外,用户可能希望问题解析后有相关问题,如示例中的Spring部分。因此,最后需要生成相关问题,确保覆盖Redis的其他重要主题,如数据结构、集群模式、事务处理等。 需要检查是否所有高频问题都已涵盖,比如双写一致性、Redisson分布式锁的实现、主从复制机制、哨兵模式等,确保没有遗漏关键点。同时,确保引用标记正确对应,比如引用[1]用于缓存问题和持久化,引用[2]用于单线程性能,引用[3]用于Redisson部分。 最后,保持回答的专业性和可读性,使用技术术语但不过于晦涩,结构清晰,分点明确。确保每个部分的解析准确,解决方案实用,符合实际面试中的常见问题。</think>### Redis 高频面试题汇总及解析 --- #### 一、缓存问题 1. **缓存穿透** - **问题**:大量请求查询**不存在的数据**(如无效 ID),绕过缓存直接访问数据库。 - **原因**:恶意攻击或业务逻辑缺陷[^1]。 - **解决方案**: - **布隆过滤器**:预加载有效键值,拦截非法请求。 - **空值缓存**:对无效查询结果缓存空值(设置短过期时间)。 2. **缓存击穿** - **问题**:**热点 Key 过期瞬间**,大量请求直接穿透到数据库。 - **解决方案**: - **互斥锁**:通过 Redis 的 `SETNX` 命令实现分布式锁,仅允许一个线程重建缓存。 - **逻辑过期**:对 Key 设置逻辑过期时间(业务字段控制),异步更新缓存[^1]。 3. **缓存雪崩** - **问题**:**大量 Key 同时过期**或 Redis 宕机,导致数据库压力激增。 - **解决方案**: - **随机过期时间**:为 Key 添加随机偏移量(如基础时间 ± 10 分钟)。 - **多级缓存**:结合本地缓存(如 Caffeine)和分布式缓存。 - **集群高可用**:通过主从复制、哨兵模式保障服务可用性[^1]。 --- #### 二、持久化机制 4. **RDB 与 AOF 的区别与选择** - **RDB**(快照): - **原理**:定时生成内存数据的二进制快照文件(`dump.rdb`)。 - **优点**:恢复速度快,适合备份。 - **缺点**:可能丢失最后一次快照后的数据。 - **AOF**(追加日志): - **原理**:记录所有写操作命令(如 `SET`、`DEL`),通过重放恢复数据。 - **优点**:数据完整性高(可配置同步频率:`always`/`everysec`/`no`)。 - **缺点**:文件体积大,恢复速度慢。 - **选择**:生产环境通常**混合使用**(RDB 定期备份 + AOF 增量记录)[^1]。 --- #### 三、内存管理 5. **过期键删除策略** - **惰性删除**:访问 Key 时检查是否过期,过期则删除。 - **定期删除**:Redis 随机抽样检查并删除过期 Key(平衡 CPU 与内存)。 6. **内存淘汰策略** - **8 种策略**(通过 `maxmemory-policy` 配置): - `volatile-lru`:从设置了过期时间的 Key 中淘汰最近最少使用的。 - `allkeys-lru`:从所有 Key 中淘汰 LRU。 - `volatile-ttl`:淘汰剩余存活时间最短的 Key。 - `noeviction`(默认):禁止淘汰,内存不足时返回错误。 --- #### 四、分布式锁与一致性 7. **Redisson 分布式锁实现** - **原理**:基于 Lua 脚本保证原子性,通过 `hash` 结构存储锁信息(Key:锁名,Field:线程 ID,Value:重入次数)。 - **锁续期**:通过 `watchdog` 机制自动续期(默认 30 秒,每 10 秒检查一次)。 - **可重入性**:记录线程 ID 和重入次数,同一线程可多次加锁[^3]。 8. **双写一致性方案** - **强一致**: - **延迟双删**:先删缓存 → 更新数据库 → 延迟再删缓存。 - **读写锁**:读操作加读锁,写操作加写锁。 - **最终一致**: - **消息队列**:通过 Canal 监听数据库变更,异步更新缓存[^1]。 --- #### 五、高可用架构 9. **主从复制** - **流程**: 1. **全量复制**:从节点首次连接主节点时,主节点生成 RDB 文件并传输。 2. **增量复制**:后续通过复制缓冲区同步写命令。 - **问题**:主从延迟可能导致读取旧数据(可强制读主库或容忍延迟)。 10. **哨兵模式(Sentinel)** - **功能**:监控主节点健康状态,自动故障转移(选举新主节点)。 - **脑裂问题**:网络分区导致多个主节点,可通过 `min-slaves-to-write` 配置避免[^1]。 11. **分片集群** - **原理**:数据按槽位(16384 slots)分布到多个节点,支持水平扩展。 - **读写流程**:客户端根据 Key 的 CRC16 值计算槽位,直接访问对应节点。 --- #### 六、性能优化 12. **Redis 单线程为何高效?** - **原因**: 1. **纯内存操作**:数据存储在内存中。 2. **I/O 多路复用**:通过 epoll/kqueue 实现非阻塞网络模型,单线程处理多连接。 3. **避免上下文切换**:无多线程竞争开销[^2]。 - **6.0 多线程**:仅网络 I/O 处理多线程化,核心逻辑仍为单线程。 --- ### 相关问题 1. **Redis 如何实现事务?与 MySQL 事务有何区别?** 2. **Redis 的 HyperLogLog 是什么?适用哪些场景?** 3. **如何通过 Redis 实现分布式限流?** 4. **Redis 的 Big Key 问题如何排查与解决?** 5. **Redis 在秒杀场景中的典型应用方案?** [^1]: Redis 缓存设计与高可用实践 [^2]: Redis 单线程模型与性能优化 [^3]: Redisson 分布式锁实现原理
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值